Maurer's clefts, the enigma of Plasmodium falciparum

Plasmodium falciparum , the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor Pf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-12, Vol.110 (50), p.19987-19994
Hauptverfasser: Mundwiler-Pachlatko, Esther, Beck, Hans-Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19994
container_issue 50
container_start_page 19987
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Mundwiler-Pachlatko, Esther
Beck, Hans-Peter
description Plasmodium falciparum , the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor Pf EMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum , might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.
doi_str_mv 10.1073/pnas.1309247110
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23758098</jstor_id><sourcerecordid>23758098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-edccd0bea4fc44dd765e8540970b852844b4786e36d4a4538385bd068b96e2693</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhq0KRJeFc0_QSBzg0LRje_x1QUIVX1IrkGjPlpM426ySeLETJP49Xu12Cz1xsqx55tHMvIScUDinoPjFZnTpnHIwDBWlcEQWFAwtJRp4QhYATJUaGR6T5ymtAcAIDc_IMUOmkSq2IHjt5ujj21TUvW-ndFZMd77wY7caXBHa4nvv0hCabh6K1vV1t3FxHl6Qp_mT_Mv9uyS3nz7eXH4pr759_nr54aqsBRNT6Zu6bqDyDtsasWmUFF4LBKOg0iJPgBUqLT2XDToUXHMtqgakroz0TBq-JO933s1cDdnmxym63m5iN7j42wbX2X8rY3dnV-GX5Voiz_dZknd7QQw_Z58mO3Sp9n3vRh_mZCkaJjlKxf4DlUpynS-X0TeP0HWY45gvkSkFoKVBmamLHVXHkFL07WFuCnYbnt2GZx_Cyx2v_173wN-nlYFiD2w7D7rsE1lpjN5u_GqHrNMU4oOCq5y80bl-uqu3Lli3il2ytz8YUAlAczKS8j_1YbC3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470086946</pqid></control><display><type>article</type><title>Maurer's clefts, the enigma of Plasmodium falciparum</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Mundwiler-Pachlatko, Esther ; Beck, Hans-Peter</creator><creatorcontrib>Mundwiler-Pachlatko, Esther ; Beck, Hans-Peter</creatorcontrib><description>Plasmodium falciparum , the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor Pf EMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum , might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1309247110</identifier><identifier>PMID: 24284172</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; Cell membranes ; Cytoplasm ; Cytosol ; Erythrocyte membrane ; Erythrocytes ; Erythrocytes - cytology ; Erythrocytes - metabolism ; Erythrocytes - parasitology ; Host-Parasite Interactions - physiology ; Humans ; Immunology ; Malaria ; Membrane proteins ; Membranes ; Models, Biological ; Parasite hosts ; Parasites ; Parasitic protozoa ; Parasitism ; PERSPECTIVE ; Plasmodium falciparum ; Plasmodium falciparum - metabolism ; Protein Transport - physiology ; Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (50), p.19987-19994</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 10, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-edccd0bea4fc44dd765e8540970b852844b4786e36d4a4538385bd068b96e2693</citedby><cites>FETCH-LOGICAL-c525t-edccd0bea4fc44dd765e8540970b852844b4786e36d4a4538385bd068b96e2693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23758098$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23758098$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24284172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mundwiler-Pachlatko, Esther</creatorcontrib><creatorcontrib>Beck, Hans-Peter</creatorcontrib><title>Maurer's clefts, the enigma of Plasmodium falciparum</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Plasmodium falciparum , the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor Pf EMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum , might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.</description><subject>Biological Sciences</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>Cell membranes</subject><subject>Cytoplasm</subject><subject>Cytosol</subject><subject>Erythrocyte membrane</subject><subject>Erythrocytes</subject><subject>Erythrocytes - cytology</subject><subject>Erythrocytes - metabolism</subject><subject>Erythrocytes - parasitology</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Humans</subject><subject>Immunology</subject><subject>Malaria</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Parasite hosts</subject><subject>Parasites</subject><subject>Parasitic protozoa</subject><subject>Parasitism</subject><subject>PERSPECTIVE</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - metabolism</subject><subject>Protein Transport - physiology</subject><subject>Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhq0KRJeFc0_QSBzg0LRje_x1QUIVX1IrkGjPlpM426ySeLETJP49Xu12Cz1xsqx55tHMvIScUDinoPjFZnTpnHIwDBWlcEQWFAwtJRp4QhYATJUaGR6T5ymtAcAIDc_IMUOmkSq2IHjt5ujj21TUvW-ndFZMd77wY7caXBHa4nvv0hCabh6K1vV1t3FxHl6Qp_mT_Mv9uyS3nz7eXH4pr759_nr54aqsBRNT6Zu6bqDyDtsasWmUFF4LBKOg0iJPgBUqLT2XDToUXHMtqgakroz0TBq-JO933s1cDdnmxym63m5iN7j42wbX2X8rY3dnV-GX5Voiz_dZknd7QQw_Z58mO3Sp9n3vRh_mZCkaJjlKxf4DlUpynS-X0TeP0HWY45gvkSkFoKVBmamLHVXHkFL07WFuCnYbnt2GZx_Cyx2v_173wN-nlYFiD2w7D7rsE1lpjN5u_GqHrNMU4oOCq5y80bl-uqu3Lli3il2ytz8YUAlAczKS8j_1YbC3</recordid><startdate>20131210</startdate><enddate>20131210</enddate><creator>Mundwiler-Pachlatko, Esther</creator><creator>Beck, Hans-Peter</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>5PM</scope></search><sort><creationdate>20131210</creationdate><title>Maurer's clefts, the enigma of Plasmodium falciparum</title><author>Mundwiler-Pachlatko, Esther ; Beck, Hans-Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-edccd0bea4fc44dd765e8540970b852844b4786e36d4a4538385bd068b96e2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biological Sciences</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>Cell membranes</topic><topic>Cytoplasm</topic><topic>Cytosol</topic><topic>Erythrocyte membrane</topic><topic>Erythrocytes</topic><topic>Erythrocytes - cytology</topic><topic>Erythrocytes - metabolism</topic><topic>Erythrocytes - parasitology</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Humans</topic><topic>Immunology</topic><topic>Malaria</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Parasite hosts</topic><topic>Parasites</topic><topic>Parasitic protozoa</topic><topic>Parasitism</topic><topic>PERSPECTIVE</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - metabolism</topic><topic>Protein Transport - physiology</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mundwiler-Pachlatko, Esther</creatorcontrib><creatorcontrib>Beck, Hans-Peter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mundwiler-Pachlatko, Esther</au><au>Beck, Hans-Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maurer's clefts, the enigma of Plasmodium falciparum</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-12-10</date><risdate>2013</risdate><volume>110</volume><issue>50</issue><spage>19987</spage><epage>19994</epage><pages>19987-19994</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Plasmodium falciparum , the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor Pf EMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer’s clefts. However, the genesis, role, and function of Maurer’s clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer’s clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum , might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24284172</pmid><doi>10.1073/pnas.1309247110</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-12, Vol.110 (50), p.19987-19994
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864307
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Cell Membrane - metabolism
Cell Membrane - ultrastructure
Cell membranes
Cytoplasm
Cytosol
Erythrocyte membrane
Erythrocytes
Erythrocytes - cytology
Erythrocytes - metabolism
Erythrocytes - parasitology
Host-Parasite Interactions - physiology
Humans
Immunology
Malaria
Membrane proteins
Membranes
Models, Biological
Parasite hosts
Parasites
Parasitic protozoa
Parasitism
PERSPECTIVE
Plasmodium falciparum
Plasmodium falciparum - metabolism
Protein Transport - physiology
Proteins
title Maurer's clefts, the enigma of Plasmodium falciparum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maurer's%20clefts,%20the%20enigma%20of%20Plasmodium%20falciparum&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Mundwiler-Pachlatko,%20Esther&rft.date=2013-12-10&rft.volume=110&rft.issue=50&rft.spage=19987&rft.epage=19994&rft.pages=19987-19994&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1309247110&rft_dat=%3Cjstor_pubme%3E23758098%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1470086946&rft_id=info:pmid/24284172&rft_jstor_id=23758098&rfr_iscdi=true