Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors
The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, P...
Gespeichert in:
Veröffentlicht in: | Cancer discovery 2013-12, Vol.3 (12), p.1355-1363 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1363 |
---|---|
container_issue | 12 |
container_start_page | 1355 |
container_title | Cancer discovery |
container_volume | 3 |
creator | Akbay, Esra A Koyama, Shohei Carretero, Julian Altabef, Abigail Tchaicha, Jeremy H Christensen, Camilla L Mikse, Oliver R Cherniack, Andrew D Beauchamp, Ellen M Pugh, Trevor J Wilkerson, Matthew D Fecci, Peter E Butaney, Mohit Reibel, Jacob B Soucheray, Margaret Cohoon, Travis J Janne, Pasi A Meyerson, Matthew Hayes, D Neil Shapiro, Geoffrey I Shimamura, Takeshi Sholl, Lynette M Rodig, Scott J Freeman, Gordon J Hammerman, Peter S Dranoff, Glenn Wong, Kwok-Kin |
description | The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition.
We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape. |
doi_str_mv | 10.1158/2159-8290.CD-13-0310 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1467635080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-d9f68ddddde929a01c008a4343cbabac3afdaed8fe86e66f31be82e6e54c0a413</originalsourceid><addsrcrecordid>eNpVUcFKxDAQDaKorP6BSI5eqkmTpulFkNVdhQVF1GtI06kbaZvapCv797asFp3LDDPz3jzmIXRGySWlibyKaZJFMs7I5fw2oiwijJI9dDy196c65Ufo1PsPMgTPeELSQ3QUc5LKNOXH6O3GBLvRwboGuxKHNeCngRG3Oqy_9BYb14TO5n0Aj4PDtq77BjB4o1vAtsF3y8VzVHR2Aw2u-uYdh752nT9BB6WuPJz-5Bl6Xdy9zO-j1ePyYX6zikySihAVWSlkMQZkcaYJNYRIzRlnJte5NkyXhYZCliAFCFEymoOMQUDCDdGcshm63vG2fV5DYWBQqyvVdrbW3VY5bdX_SWPX6t1tFJNigCcDwcUPQec-e_BB1dYbqCrdgOu9olykgiVEkmGV71ZN57zvoJzOUKJGV9T4cjW-X81vFWVqdGWAnf-VOIF-PWDffpCKTQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467635080</pqid></control><display><type>article</type><title>Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Akbay, Esra A ; Koyama, Shohei ; Carretero, Julian ; Altabef, Abigail ; Tchaicha, Jeremy H ; Christensen, Camilla L ; Mikse, Oliver R ; Cherniack, Andrew D ; Beauchamp, Ellen M ; Pugh, Trevor J ; Wilkerson, Matthew D ; Fecci, Peter E ; Butaney, Mohit ; Reibel, Jacob B ; Soucheray, Margaret ; Cohoon, Travis J ; Janne, Pasi A ; Meyerson, Matthew ; Hayes, D Neil ; Shapiro, Geoffrey I ; Shimamura, Takeshi ; Sholl, Lynette M ; Rodig, Scott J ; Freeman, Gordon J ; Hammerman, Peter S ; Dranoff, Glenn ; Wong, Kwok-Kin</creator><creatorcontrib>Akbay, Esra A ; Koyama, Shohei ; Carretero, Julian ; Altabef, Abigail ; Tchaicha, Jeremy H ; Christensen, Camilla L ; Mikse, Oliver R ; Cherniack, Andrew D ; Beauchamp, Ellen M ; Pugh, Trevor J ; Wilkerson, Matthew D ; Fecci, Peter E ; Butaney, Mohit ; Reibel, Jacob B ; Soucheray, Margaret ; Cohoon, Travis J ; Janne, Pasi A ; Meyerson, Matthew ; Hayes, D Neil ; Shapiro, Geoffrey I ; Shimamura, Takeshi ; Sholl, Lynette M ; Rodig, Scott J ; Freeman, Gordon J ; Hammerman, Peter S ; Dranoff, Glenn ; Wong, Kwok-Kin</creatorcontrib><description>The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition.
We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.</description><identifier>ISSN: 2159-8274</identifier><identifier>EISSN: 2159-8290</identifier><identifier>DOI: 10.1158/2159-8290.CD-13-0310</identifier><identifier>PMID: 24078774</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; B7-H1 Antigen - genetics ; B7-H1 Antigen - metabolism ; Carcinoma, Non-Small-Cell Lung - immunology ; Carcinoma, Non-Small-Cell Lung - metabolism ; Cell Line ; Cytokines - metabolism ; Gene Expression Regulation, Neoplastic ; Humans ; Lung Neoplasms - immunology ; Lung Neoplasms - metabolism ; Lymphocyte Activation ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Oncogenes ; Programmed Cell Death 1 Receptor - genetics ; Programmed Cell Death 1 Receptor - metabolism ; Receptor, Epidermal Growth Factor - genetics ; Receptor, Epidermal Growth Factor - metabolism ; Signal Transduction ; T-Lymphocytes - immunology ; Tumor Escape ; Tumor Microenvironment</subject><ispartof>Cancer discovery, 2013-12, Vol.3 (12), p.1355-1363</ispartof><rights>2013 AACR.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-d9f68ddddde929a01c008a4343cbabac3afdaed8fe86e66f31be82e6e54c0a413</citedby><cites>FETCH-LOGICAL-c576t-d9f68ddddde929a01c008a4343cbabac3afdaed8fe86e66f31be82e6e54c0a413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24078774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akbay, Esra A</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Carretero, Julian</creatorcontrib><creatorcontrib>Altabef, Abigail</creatorcontrib><creatorcontrib>Tchaicha, Jeremy H</creatorcontrib><creatorcontrib>Christensen, Camilla L</creatorcontrib><creatorcontrib>Mikse, Oliver R</creatorcontrib><creatorcontrib>Cherniack, Andrew D</creatorcontrib><creatorcontrib>Beauchamp, Ellen M</creatorcontrib><creatorcontrib>Pugh, Trevor J</creatorcontrib><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Fecci, Peter E</creatorcontrib><creatorcontrib>Butaney, Mohit</creatorcontrib><creatorcontrib>Reibel, Jacob B</creatorcontrib><creatorcontrib>Soucheray, Margaret</creatorcontrib><creatorcontrib>Cohoon, Travis J</creatorcontrib><creatorcontrib>Janne, Pasi A</creatorcontrib><creatorcontrib>Meyerson, Matthew</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><creatorcontrib>Shapiro, Geoffrey I</creatorcontrib><creatorcontrib>Shimamura, Takeshi</creatorcontrib><creatorcontrib>Sholl, Lynette M</creatorcontrib><creatorcontrib>Rodig, Scott J</creatorcontrib><creatorcontrib>Freeman, Gordon J</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Wong, Kwok-Kin</creatorcontrib><title>Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors</title><title>Cancer discovery</title><addtitle>Cancer Discov</addtitle><description>The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition.
We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.</description><subject>Animals</subject><subject>B7-H1 Antigen - genetics</subject><subject>B7-H1 Antigen - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - immunology</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Cell Line</subject><subject>Cytokines - metabolism</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Humans</subject><subject>Lung Neoplasms - immunology</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lymphocyte Activation</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>Oncogenes</subject><subject>Programmed Cell Death 1 Receptor - genetics</subject><subject>Programmed Cell Death 1 Receptor - metabolism</subject><subject>Receptor, Epidermal Growth Factor - genetics</subject><subject>Receptor, Epidermal Growth Factor - metabolism</subject><subject>Signal Transduction</subject><subject>T-Lymphocytes - immunology</subject><subject>Tumor Escape</subject><subject>Tumor Microenvironment</subject><issn>2159-8274</issn><issn>2159-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUcFKxDAQDaKorP6BSI5eqkmTpulFkNVdhQVF1GtI06kbaZvapCv797asFp3LDDPz3jzmIXRGySWlibyKaZJFMs7I5fw2oiwijJI9dDy196c65Ufo1PsPMgTPeELSQ3QUc5LKNOXH6O3GBLvRwboGuxKHNeCngRG3Oqy_9BYb14TO5n0Aj4PDtq77BjB4o1vAtsF3y8VzVHR2Aw2u-uYdh752nT9BB6WuPJz-5Bl6Xdy9zO-j1ePyYX6zikySihAVWSlkMQZkcaYJNYRIzRlnJte5NkyXhYZCliAFCFEymoOMQUDCDdGcshm63vG2fV5DYWBQqyvVdrbW3VY5bdX_SWPX6t1tFJNigCcDwcUPQec-e_BB1dYbqCrdgOu9olykgiVEkmGV71ZN57zvoJzOUKJGV9T4cjW-X81vFWVqdGWAnf-VOIF-PWDffpCKTQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Akbay, Esra A</creator><creator>Koyama, Shohei</creator><creator>Carretero, Julian</creator><creator>Altabef, Abigail</creator><creator>Tchaicha, Jeremy H</creator><creator>Christensen, Camilla L</creator><creator>Mikse, Oliver R</creator><creator>Cherniack, Andrew D</creator><creator>Beauchamp, Ellen M</creator><creator>Pugh, Trevor J</creator><creator>Wilkerson, Matthew D</creator><creator>Fecci, Peter E</creator><creator>Butaney, Mohit</creator><creator>Reibel, Jacob B</creator><creator>Soucheray, Margaret</creator><creator>Cohoon, Travis J</creator><creator>Janne, Pasi A</creator><creator>Meyerson, Matthew</creator><creator>Hayes, D Neil</creator><creator>Shapiro, Geoffrey I</creator><creator>Shimamura, Takeshi</creator><creator>Sholl, Lynette M</creator><creator>Rodig, Scott J</creator><creator>Freeman, Gordon J</creator><creator>Hammerman, Peter S</creator><creator>Dranoff, Glenn</creator><creator>Wong, Kwok-Kin</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors</title><author>Akbay, Esra A ; Koyama, Shohei ; Carretero, Julian ; Altabef, Abigail ; Tchaicha, Jeremy H ; Christensen, Camilla L ; Mikse, Oliver R ; Cherniack, Andrew D ; Beauchamp, Ellen M ; Pugh, Trevor J ; Wilkerson, Matthew D ; Fecci, Peter E ; Butaney, Mohit ; Reibel, Jacob B ; Soucheray, Margaret ; Cohoon, Travis J ; Janne, Pasi A ; Meyerson, Matthew ; Hayes, D Neil ; Shapiro, Geoffrey I ; Shimamura, Takeshi ; Sholl, Lynette M ; Rodig, Scott J ; Freeman, Gordon J ; Hammerman, Peter S ; Dranoff, Glenn ; Wong, Kwok-Kin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-d9f68ddddde929a01c008a4343cbabac3afdaed8fe86e66f31be82e6e54c0a413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>B7-H1 Antigen - genetics</topic><topic>B7-H1 Antigen - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - immunology</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Cell Line</topic><topic>Cytokines - metabolism</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Humans</topic><topic>Lung Neoplasms - immunology</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lymphocyte Activation</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>Oncogenes</topic><topic>Programmed Cell Death 1 Receptor - genetics</topic><topic>Programmed Cell Death 1 Receptor - metabolism</topic><topic>Receptor, Epidermal Growth Factor - genetics</topic><topic>Receptor, Epidermal Growth Factor - metabolism</topic><topic>Signal Transduction</topic><topic>T-Lymphocytes - immunology</topic><topic>Tumor Escape</topic><topic>Tumor Microenvironment</topic><toplevel>online_resources</toplevel><creatorcontrib>Akbay, Esra A</creatorcontrib><creatorcontrib>Koyama, Shohei</creatorcontrib><creatorcontrib>Carretero, Julian</creatorcontrib><creatorcontrib>Altabef, Abigail</creatorcontrib><creatorcontrib>Tchaicha, Jeremy H</creatorcontrib><creatorcontrib>Christensen, Camilla L</creatorcontrib><creatorcontrib>Mikse, Oliver R</creatorcontrib><creatorcontrib>Cherniack, Andrew D</creatorcontrib><creatorcontrib>Beauchamp, Ellen M</creatorcontrib><creatorcontrib>Pugh, Trevor J</creatorcontrib><creatorcontrib>Wilkerson, Matthew D</creatorcontrib><creatorcontrib>Fecci, Peter E</creatorcontrib><creatorcontrib>Butaney, Mohit</creatorcontrib><creatorcontrib>Reibel, Jacob B</creatorcontrib><creatorcontrib>Soucheray, Margaret</creatorcontrib><creatorcontrib>Cohoon, Travis J</creatorcontrib><creatorcontrib>Janne, Pasi A</creatorcontrib><creatorcontrib>Meyerson, Matthew</creatorcontrib><creatorcontrib>Hayes, D Neil</creatorcontrib><creatorcontrib>Shapiro, Geoffrey I</creatorcontrib><creatorcontrib>Shimamura, Takeshi</creatorcontrib><creatorcontrib>Sholl, Lynette M</creatorcontrib><creatorcontrib>Rodig, Scott J</creatorcontrib><creatorcontrib>Freeman, Gordon J</creatorcontrib><creatorcontrib>Hammerman, Peter S</creatorcontrib><creatorcontrib>Dranoff, Glenn</creatorcontrib><creatorcontrib>Wong, Kwok-Kin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbay, Esra A</au><au>Koyama, Shohei</au><au>Carretero, Julian</au><au>Altabef, Abigail</au><au>Tchaicha, Jeremy H</au><au>Christensen, Camilla L</au><au>Mikse, Oliver R</au><au>Cherniack, Andrew D</au><au>Beauchamp, Ellen M</au><au>Pugh, Trevor J</au><au>Wilkerson, Matthew D</au><au>Fecci, Peter E</au><au>Butaney, Mohit</au><au>Reibel, Jacob B</au><au>Soucheray, Margaret</au><au>Cohoon, Travis J</au><au>Janne, Pasi A</au><au>Meyerson, Matthew</au><au>Hayes, D Neil</au><au>Shapiro, Geoffrey I</au><au>Shimamura, Takeshi</au><au>Sholl, Lynette M</au><au>Rodig, Scott J</au><au>Freeman, Gordon J</au><au>Hammerman, Peter S</au><au>Dranoff, Glenn</au><au>Wong, Kwok-Kin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors</atitle><jtitle>Cancer discovery</jtitle><addtitle>Cancer Discov</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>3</volume><issue>12</issue><spage>1355</spage><epage>1363</epage><pages>1355-1363</pages><issn>2159-8274</issn><eissn>2159-8290</eissn><abstract>The success in lung cancer therapy with programmed death (PD)-1 blockade suggests that immune escape mechanisms contribute to lung tumor pathogenesis. We identified a correlation between EGF receptor (EGFR) pathway activation and a signature of immunosuppression manifested by upregulation of PD-1, PD-L1, CTL antigen-4 (CTLA-4), and multiple tumor-promoting inflammatory cytokines. We observed decreased CTLs and increased markers of T-cell exhaustion in mouse models of EGFR-driven lung cancer. PD-1 antibody blockade improved the survival of mice with EGFR-driven adenocarcinomas by enhancing effector T-cell function and lowering the levels of tumor-promoting cytokines. Expression of mutant EGFR in bronchial epithelial cells induced PD-L1, and PD-L1 expression was reduced by EGFR inhibitors in non-small cell lung cancer cell lines with activated EGFR. These data suggest that oncogenic EGFR signaling remodels the tumor microenvironment to trigger immune escape and mechanistically link treatment response to PD-1 inhibition.
We show that autochthonous EGFR-driven lung tumors inhibit antitumor immunity by activating the PD-1/PD-L1 pathway to suppress T-cell function and increase levels of proinflammatory cytokines. These findings indicate that EGFR functions as an oncogene through non-cell-autonomous mechanisms and raise the possibility that other oncogenes may drive immune escape.</abstract><cop>United States</cop><pmid>24078774</pmid><doi>10.1158/2159-8290.CD-13-0310</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2159-8274 |
ispartof | Cancer discovery, 2013-12, Vol.3 (12), p.1355-1363 |
issn | 2159-8274 2159-8290 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3864135 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Animals B7-H1 Antigen - genetics B7-H1 Antigen - metabolism Carcinoma, Non-Small-Cell Lung - immunology Carcinoma, Non-Small-Cell Lung - metabolism Cell Line Cytokines - metabolism Gene Expression Regulation, Neoplastic Humans Lung Neoplasms - immunology Lung Neoplasms - metabolism Lymphocyte Activation Mice Mice, Inbred C57BL Mice, Transgenic Oncogenes Programmed Cell Death 1 Receptor - genetics Programmed Cell Death 1 Receptor - metabolism Receptor, Epidermal Growth Factor - genetics Receptor, Epidermal Growth Factor - metabolism Signal Transduction T-Lymphocytes - immunology Tumor Escape Tumor Microenvironment |
title | Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A57%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20of%20the%20PD-1%20pathway%20contributes%20to%20immune%20escape%20in%20EGFR-driven%20lung%20tumors&rft.jtitle=Cancer%20discovery&rft.au=Akbay,%20Esra%20A&rft.date=2013-12-01&rft.volume=3&rft.issue=12&rft.spage=1355&rft.epage=1363&rft.pages=1355-1363&rft.issn=2159-8274&rft.eissn=2159-8290&rft_id=info:doi/10.1158/2159-8290.CD-13-0310&rft_dat=%3Cproquest_pubme%3E1467635080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467635080&rft_id=info:pmid/24078774&rfr_iscdi=true |