Buckling of a growing tissue and the emergence of two-dimensional patterns
•We model the growth of gut epithelial cells cultured upon a deformable substrate.•Growth generates buckling instabilities, contributing to crypt formation in vivo.•Variations in mechanical properties have little effect on resulting configurations.•Configurations are controlled by growth patterns &a...
Gespeichert in:
Veröffentlicht in: | Mathematical biosciences 2013-12, Vol.246 (2), p.229-241 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 2 |
container_start_page | 229 |
container_title | Mathematical biosciences |
container_volume | 246 |
creator | Nelson, M.R. King, J.R. Jensen, O.E. |
description | •We model the growth of gut epithelial cells cultured upon a deformable substrate.•Growth generates buckling instabilities, contributing to crypt formation in vivo.•Variations in mechanical properties have little effect on resulting configurations.•Configurations are controlled by growth patterns & interactions with strata below.
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity. |
doi_str_mv | 10.1016/j.mbs.2013.09.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0025556413002368</els_id><sourcerecordid>1462764954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-e3bdf3546db3ac008fb85ff927381a494cfb271b28e7f17598a2a5a8c13204643</originalsourceid><addsrcrecordid>eNqFkUtv1TAQRi0EopfCD2CDsmST4PdDSEi04qlKbGBtOc741pckvthOK_49iW6pYAOrkTVnPs34IPSc4I5gIl8duqkvHcWEddh0GOsHaEe0Mi0jjD9EO4ypaIWQ_Aw9KeWAMVGEyMfojHJCteJmhz5fLP77GOd9k0Ljmn1Ot9ujxlIWaNw8NPUaGpgg72H2sFH1NrVDnGAuMc1ubI6uVshzeYoeBTcWeHZXz9G39---Xn5sr758-HT59qr1QuDaAuuHwASXQ8-cX5cOvRYhGKqYJo4b7kNPFempBhWIEkY76oTTnjCKueTsHL055R6XfoLBw1yzG-0xx8nlnza5aP_uzPHa7tONZVoyo8Qa8PIuIKcfC5Rqp1g8jKObIS3FEkGkEphj_n-US6okN2JDyQn1OZWSIdxvRLDddNmDXXXZTZfFxq6XrzMv_jzlfuK3nxV4fQJg_dCbCNkWHzcRQ8zgqx1S_Ef8L_JlpiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462764954</pqid></control><display><type>article</type><title>Buckling of a growing tissue and the emergence of two-dimensional patterns</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Nelson, M.R. ; King, J.R. ; Jensen, O.E.</creator><creatorcontrib>Nelson, M.R. ; King, J.R. ; Jensen, O.E.</creatorcontrib><description>•We model the growth of gut epithelial cells cultured upon a deformable substrate.•Growth generates buckling instabilities, contributing to crypt formation in vivo.•Variations in mechanical properties have little effect on resulting configurations.•Configurations are controlled by growth patterns & interactions with strata below.
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2013.09.008</identifier><identifier>PMID: 24128749</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomechanical Phenomena - physiology ; Buckling ; Cell Proliferation ; Epithelial Cells - cytology ; Epithelial Cells - physiology ; Humans ; Intestine, Large - cytology ; Intestine, Large - physiology ; Intestine, Large - ultrastructure ; Models, Biological ; Pattern formation ; Tissue Engineering - methods ; Tissue growth ; von Kármán plate</subject><ispartof>Mathematical biosciences, 2013-12, Vol.246 (2), p.229-241</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>2013 Elsevier Inc. 2013 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-e3bdf3546db3ac008fb85ff927381a494cfb271b28e7f17598a2a5a8c13204643</citedby><cites>FETCH-LOGICAL-c550t-e3bdf3546db3ac008fb85ff927381a494cfb271b28e7f17598a2a5a8c13204643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0025556413002368$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24128749$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nelson, M.R.</creatorcontrib><creatorcontrib>King, J.R.</creatorcontrib><creatorcontrib>Jensen, O.E.</creatorcontrib><title>Buckling of a growing tissue and the emergence of two-dimensional patterns</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>•We model the growth of gut epithelial cells cultured upon a deformable substrate.•Growth generates buckling instabilities, contributing to crypt formation in vivo.•Variations in mechanical properties have little effect on resulting configurations.•Configurations are controlled by growth patterns & interactions with strata below.
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity.</description><subject>Biomechanical Phenomena - physiology</subject><subject>Buckling</subject><subject>Cell Proliferation</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - physiology</subject><subject>Humans</subject><subject>Intestine, Large - cytology</subject><subject>Intestine, Large - physiology</subject><subject>Intestine, Large - ultrastructure</subject><subject>Models, Biological</subject><subject>Pattern formation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue growth</subject><subject>von Kármán plate</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQRi0EopfCD2CDsmST4PdDSEi04qlKbGBtOc741pckvthOK_49iW6pYAOrkTVnPs34IPSc4I5gIl8duqkvHcWEddh0GOsHaEe0Mi0jjD9EO4ypaIWQ_Aw9KeWAMVGEyMfojHJCteJmhz5fLP77GOd9k0Ljmn1Ot9ujxlIWaNw8NPUaGpgg72H2sFH1NrVDnGAuMc1ubI6uVshzeYoeBTcWeHZXz9G39---Xn5sr758-HT59qr1QuDaAuuHwASXQ8-cX5cOvRYhGKqYJo4b7kNPFempBhWIEkY76oTTnjCKueTsHL055R6XfoLBw1yzG-0xx8nlnza5aP_uzPHa7tONZVoyo8Qa8PIuIKcfC5Rqp1g8jKObIS3FEkGkEphj_n-US6okN2JDyQn1OZWSIdxvRLDddNmDXXXZTZfFxq6XrzMv_jzlfuK3nxV4fQJg_dCbCNkWHzcRQ8zgqx1S_Ef8L_JlpiA</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Nelson, M.R.</creator><creator>King, J.R.</creator><creator>Jensen, O.E.</creator><general>Elsevier Inc</general><general>American Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Buckling of a growing tissue and the emergence of two-dimensional patterns</title><author>Nelson, M.R. ; King, J.R. ; Jensen, O.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-e3bdf3546db3ac008fb85ff927381a494cfb271b28e7f17598a2a5a8c13204643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biomechanical Phenomena - physiology</topic><topic>Buckling</topic><topic>Cell Proliferation</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - physiology</topic><topic>Humans</topic><topic>Intestine, Large - cytology</topic><topic>Intestine, Large - physiology</topic><topic>Intestine, Large - ultrastructure</topic><topic>Models, Biological</topic><topic>Pattern formation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue growth</topic><topic>von Kármán plate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, M.R.</creatorcontrib><creatorcontrib>King, J.R.</creatorcontrib><creatorcontrib>Jensen, O.E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, M.R.</au><au>King, J.R.</au><au>Jensen, O.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Buckling of a growing tissue and the emergence of two-dimensional patterns</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2013-12</date><risdate>2013</risdate><volume>246</volume><issue>2</issue><spage>229</spage><epage>241</epage><pages>229-241</pages><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>•We model the growth of gut epithelial cells cultured upon a deformable substrate.•Growth generates buckling instabilities, contributing to crypt formation in vivo.•Variations in mechanical properties have little effect on resulting configurations.•Configurations are controlled by growth patterns & interactions with strata below.
The process of biological growth and the associated generation of residual stress has previously been considered as a driving mechanism for tissue buckling and pattern selection in numerous areas of biology. Here, we develop a two-dimensional thin plate theory to simulate the growth of cultured intestinal epithelial cells on a deformable substrate, with the goal of elucidating how a tissue engineer might best recreate the regular array of invaginations (crypts of Lieberkühn) found in the wall of the mammalian intestine. We extend the standard von Kármán equations to incorporate inhomogeneity in the plate’s mechanical properties and surface stresses applied to the substrate by cell proliferation. We determine numerically the configurations of a homogeneous plate under uniform cell growth, and show how tethering to an underlying elastic foundation can be used to promote higher-order buckled configurations. We then examine the independent effects of localised softening of the substrate and spatial patterning of cellular growth, demonstrating that (within a two-dimensional framework, and contrary to the predictions of one-dimensional models) growth patterning constitutes a more viable mechanism for control of crypt distribution than does material inhomogeneity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24128749</pmid><doi>10.1016/j.mbs.2013.09.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5564 |
ispartof | Mathematical biosciences, 2013-12, Vol.246 (2), p.229-241 |
issn | 0025-5564 1879-3134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863975 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Biomechanical Phenomena - physiology Buckling Cell Proliferation Epithelial Cells - cytology Epithelial Cells - physiology Humans Intestine, Large - cytology Intestine, Large - physiology Intestine, Large - ultrastructure Models, Biological Pattern formation Tissue Engineering - methods Tissue growth von Kármán plate |
title | Buckling of a growing tissue and the emergence of two-dimensional patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Buckling%20of%20a%20growing%20tissue%20and%20the%20emergence%20of%20two-dimensional%20patterns&rft.jtitle=Mathematical%20biosciences&rft.au=Nelson,%20M.R.&rft.date=2013-12&rft.volume=246&rft.issue=2&rft.spage=229&rft.epage=241&rft.pages=229-241&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2013.09.008&rft_dat=%3Cproquest_pubme%3E1462764954%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462764954&rft_id=info:pmid/24128749&rft_els_id=S0025556413002368&rfr_iscdi=true |