NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel

The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-10, Vol.135 (40), p.15101-15113
Hauptverfasser: Zhuang, Tiandi, Chisholm, Christina, Chen, Min, Tamm, Lukas K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15113
container_issue 40
container_start_page 15101
container_title Journal of the American Chemical Society
container_volume 135
creator Zhuang, Tiandi
Chisholm, Christina
Chen, Min
Tamm, Lukas K
description The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.
doi_str_mv 10.1021/ja408206e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2000350707</sourcerecordid><originalsourceid>FETCH-LOGICAL-a504t-22c2887090177bc8f9698953d7395b4bcbb5563fcbfb76c32d9e581007d688683</originalsourceid><addsrcrecordid>eNptkU1rGzEQhkVpaJw0h_yBsJdCc9h0pF197KXQGscOJDWUlhyFpNU6a7TSdrUOyb-PjB2TQk4zwzzzzvAOQucYrjAQ_G2tShAEmP2AJpgSyCkm7COaAADJuWDFMTqJcZ3Kkgj8CR2TEghUrJqg-193v_OfKto6mwbfhKFTYxu8ctnMR9tpZ2M2e-qdan3WL_K5GhO57K1v_SpTPk25ELd5aLJl18-z6YPy3rrP6KhRLtqzfTxFf69nf6aL_HY5v5n-uM0VhXLMCTFECA4VYM61EU06SlS0qHlRUV1qozWlrGiMbjRnpiB1ZanAALxmQjBRnKLvO91-oztbG-vHQTnZD22nhmcZVCv_7_j2Qa7CoyySLZywJPB1LzCEfxsbR9m10VjnlLdhEyVJrhUUOPCEXu5QM4QYB9sc1mCQ20fIwyMSe_H2rgP56nwCvuwAZaJch82QPI_vCL0AWy2ONA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000350707</pqid></control><display><type>article</type><title>NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhuang, Tiandi ; Chisholm, Christina ; Chen, Min ; Tamm, Lukas K</creator><creatorcontrib>Zhuang, Tiandi ; Chisholm, Christina ; Chen, Min ; Tamm, Lukas K</creatorcontrib><description>The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.</description><identifier>ISSN: 0002-7863</identifier><identifier>ISSN: 1520-5126</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja408206e</identifier><identifier>PMID: 24020969</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Outer Membrane Proteins - chemistry ; Bacterial Outer Membrane Proteins - genetics ; Bacterial Outer Membrane Proteins - metabolism ; crosslinking ; crystal structure ; Disulfides - chemistry ; electrophysiology ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Hydrogen-Ion Concentration ; Ion Channel Gating ; Magnetic Resonance Spectroscopy ; Micelles ; Molecular Dynamics Simulation ; Mutagenesis, Site-Directed ; Mutation ; nuclear magnetic resonance spectroscopy ; oligosaccharides ; outer membrane proteins ; Phosphorylcholine - analogs &amp; derivatives ; Phosphorylcholine - chemistry ; porins ; Porins - chemistry ; Porins - genetics ; Porins - metabolism ; Protein Conformation</subject><ispartof>Journal of the American Chemical Society, 2013-10, Vol.135 (40), p.15101-15113</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a504t-22c2887090177bc8f9698953d7395b4bcbb5563fcbfb76c32d9e581007d688683</citedby><cites>FETCH-LOGICAL-a504t-22c2887090177bc8f9698953d7395b4bcbb5563fcbfb76c32d9e581007d688683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja408206e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja408206e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24020969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhuang, Tiandi</creatorcontrib><creatorcontrib>Chisholm, Christina</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Tamm, Lukas K</creatorcontrib><title>NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.</description><subject>Bacterial Outer Membrane Proteins - chemistry</subject><subject>Bacterial Outer Membrane Proteins - genetics</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>crosslinking</subject><subject>crystal structure</subject><subject>Disulfides - chemistry</subject><subject>electrophysiology</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channel Gating</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Micelles</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>oligosaccharides</subject><subject>outer membrane proteins</subject><subject>Phosphorylcholine - analogs &amp; derivatives</subject><subject>Phosphorylcholine - chemistry</subject><subject>porins</subject><subject>Porins - chemistry</subject><subject>Porins - genetics</subject><subject>Porins - metabolism</subject><subject>Protein Conformation</subject><issn>0002-7863</issn><issn>1520-5126</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1rGzEQhkVpaJw0h_yBsJdCc9h0pF197KXQGscOJDWUlhyFpNU6a7TSdrUOyb-PjB2TQk4zwzzzzvAOQucYrjAQ_G2tShAEmP2AJpgSyCkm7COaAADJuWDFMTqJcZ3Kkgj8CR2TEghUrJqg-193v_OfKto6mwbfhKFTYxu8ctnMR9tpZ2M2e-qdan3WL_K5GhO57K1v_SpTPk25ELd5aLJl18-z6YPy3rrP6KhRLtqzfTxFf69nf6aL_HY5v5n-uM0VhXLMCTFECA4VYM61EU06SlS0qHlRUV1qozWlrGiMbjRnpiB1ZanAALxmQjBRnKLvO91-oztbG-vHQTnZD22nhmcZVCv_7_j2Qa7CoyySLZywJPB1LzCEfxsbR9m10VjnlLdhEyVJrhUUOPCEXu5QM4QYB9sc1mCQ20fIwyMSe_H2rgP56nwCvuwAZaJch82QPI_vCL0AWy2ONA</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Zhuang, Tiandi</creator><creator>Chisholm, Christina</creator><creator>Chen, Min</creator><creator>Tamm, Lukas K</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131009</creationdate><title>NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel</title><author>Zhuang, Tiandi ; Chisholm, Christina ; Chen, Min ; Tamm, Lukas K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a504t-22c2887090177bc8f9698953d7395b4bcbb5563fcbfb76c32d9e581007d688683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacterial Outer Membrane Proteins - chemistry</topic><topic>Bacterial Outer Membrane Proteins - genetics</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>crosslinking</topic><topic>crystal structure</topic><topic>Disulfides - chemistry</topic><topic>electrophysiology</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channel Gating</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Micelles</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>oligosaccharides</topic><topic>outer membrane proteins</topic><topic>Phosphorylcholine - analogs &amp; derivatives</topic><topic>Phosphorylcholine - chemistry</topic><topic>porins</topic><topic>Porins - chemistry</topic><topic>Porins - genetics</topic><topic>Porins - metabolism</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Tiandi</creatorcontrib><creatorcontrib>Chisholm, Christina</creatorcontrib><creatorcontrib>Chen, Min</creatorcontrib><creatorcontrib>Tamm, Lukas K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Tiandi</au><au>Chisholm, Christina</au><au>Chen, Min</au><au>Tamm, Lukas K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>135</volume><issue>40</issue><spage>15101</spage><epage>15113</epage><pages>15101-15113</pages><issn>0002-7863</issn><issn>1520-5126</issn><eissn>1520-5126</eissn><abstract>The outer membrane protein G (OmpG) is a monomeric 33 kDa 14-stranded β-barrel membrane protein functioning as a nonspecific porin for the uptake of oligosaccharides in Escherichia coli. Two different crystal structures of OmpG obtained at different values of pH suggest a pH-gated pore opening mechanism. In these structures, extracellular loop 6 extends away from the barrel wall at neutral pH but is folded back into the pore lumen at low pH, blocking transport through the pore. Loop 6 was invisible in a previously published solution NMR structure of OmpG in n-dodecylphosphocholine micelles, presumably due to conformational exchange on an intermediate NMR time scale. Here we present an NMR paramagnetic relaxation enhancement (PRE)-based approach to visualize the conformational dynamics of loop 6 and to calculate conformational ensembles that explain the pH-gated opening and closing of the OmpG channel. The different loop conformers detected by the PRE ensemble calculations were validated by disulfide cross-linking of strategically engineered cysteines and electrophysiological single channel recordings. The results indicate a more dynamically regulated channel opening and closing than previously thought and reveal additional membrane-associated conformational ensembles at pH 6.3 and 7.0. We anticipate this approach to be generally applicable to detect and characterize functionally important conformational ensembles of membrane proteins.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24020969</pmid><doi>10.1021/ja408206e</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-10, Vol.135 (40), p.15101-15113
issn 0002-7863
1520-5126
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863726
source MEDLINE; ACS Publications
subjects Bacterial Outer Membrane Proteins - chemistry
Bacterial Outer Membrane Proteins - genetics
Bacterial Outer Membrane Proteins - metabolism
crosslinking
crystal structure
Disulfides - chemistry
electrophysiology
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Hydrogen-Ion Concentration
Ion Channel Gating
Magnetic Resonance Spectroscopy
Micelles
Molecular Dynamics Simulation
Mutagenesis, Site-Directed
Mutation
nuclear magnetic resonance spectroscopy
oligosaccharides
outer membrane proteins
Phosphorylcholine - analogs & derivatives
Phosphorylcholine - chemistry
porins
Porins - chemistry
Porins - genetics
Porins - metabolism
Protein Conformation
title NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T04%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NMR-Based%20Conformational%20Ensembles%20Explain%20pH-Gated%20Opening%20and%20Closing%20of%20OmpG%20Channel&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Zhuang,%20Tiandi&rft.date=2013-10-09&rft.volume=135&rft.issue=40&rft.spage=15101&rft.epage=15113&rft.pages=15101-15113&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja408206e&rft_dat=%3Cproquest_pubme%3E2000350707%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000350707&rft_id=info:pmid/24020969&rfr_iscdi=true