Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System
Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfid...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-12, Vol.288 (50), p.35969-35981 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35981 |
---|---|
container_issue | 50 |
container_start_page | 35969 |
container_title | The Journal of biological chemistry |
container_volume | 288 |
creator | Yazawa, Kenjiro Furusawa, Hiroyuki Okahata, Yoshio |
description | Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Background: A device of QCM can be used in the transient kinetics of oxidation of a pair of cysteine residues in DsbA by DsbB.
Results: The obtained kinetic parameters indicate that the two pairs of cysteine residues in DsbB are important.
Conclusion: The reaction pathway of almost all DsbA oxidation processes would proceed through the stable intermediate.
Significance: The transient kinetics of the reaction intermediate is important. |
doi_str_mv | 10.1074/jbc.M113.519876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819543186</els_id><sourcerecordid>1477562121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6c2009e24ccadc9ad5eb69fd70aff9eebebed5cbdf12b97a0d959bcb2dd46f253</originalsourceid><addsrcrecordid>eNp1UstuEzEUHSEQDYU1O-RlspjU9rziDVKStlCpEbQUiZ3lx53E1YxdbCcl_V4-BLdTCiywF36c4-N7j06WvSV4SnBTHl1LNV0RUkwrwmZN_SwbETwr8qIi355nI4wpyRmtZgfZqxCucRolIy-zA1qSssIFHWU_L0F0eTQ9oJWzJjpv7Bq5Fp3ZCL4HbUSEgC5hl3gBxQ2kvVDROIs-i7i5FXtk7MP91ca4Lj82Ydu1RgM6-aE2wq4BSYi3ABb9gRbOanTqfC8GIe8iJJU5Gh8HOZ8gkeDFw2ExQYkg0Ap66YWF3PS9k6Yzd6DRxVb4eIeWfh-i6NDKKO-k6IRVgMYXy9UEfUkI9K-zF22qHt48rofZ19OTq-XH_PzTh7Pl_DxXFWYxrxXFmAEtlRJaMaErkDVrdYNF2zIAmaaulNQtoZI1AmtWMakk1bqsW1oVh9n7QfdmK5N1Cmz0ouM33vTC77kThv-LWLPha7fjxawmdVkngfGjgHfftxAi701Q0KWWwG0DJ2XTVDUllCTq0UBNPYfgoX36hmB-nw2essHvs8GHbKQX7_6u7on_OwyJwAYCJI92BjwPykAyUxsPKnLtzH_FfwHAWc6P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477562121</pqid></control><display><type>article</type><title>Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Yazawa, Kenjiro ; Furusawa, Hiroyuki ; Okahata, Yoshio</creator><creatorcontrib>Yazawa, Kenjiro ; Furusawa, Hiroyuki ; Okahata, Yoshio</creatorcontrib><description>Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Background: A device of QCM can be used in the transient kinetics of oxidation of a pair of cysteine residues in DsbA by DsbB.
Results: The obtained kinetic parameters indicate that the two pairs of cysteine residues in DsbB are important.
Conclusion: The reaction pathway of almost all DsbA oxidation processes would proceed through the stable intermediate.
Significance: The transient kinetics of the reaction intermediate is important.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.519876</identifier><identifier>PMID: 24145032</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Disulfide Bond Formation Protein ; Disulfides - chemistry ; Enzyme Kinetics ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Immobilized Proteins - chemistry ; Immobilized Proteins - metabolism ; Kinetics ; Lipid Bilayers - chemistry ; Membrane Lipids ; Membrane Proteins ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Molecular Biophysics ; Mutation ; Oxidation-Reduction ; Protein Chemistry ; Protein Disulfide-Isomerases - chemistry ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - metabolism ; Protein Stability ; Quartz Crystal Microbalance ; Quartz Crystal Microbalance Techniques ; Solubility ; Sulfhydryl Compounds - chemistry ; Supported Lipid Bilayer ; Surface-Active Agents - chemistry ; Transient Kinetic Analysis ; Ubiquinone - metabolism</subject><ispartof>The Journal of biological chemistry, 2013-12, Vol.288 (50), p.35969-35981</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6c2009e24ccadc9ad5eb69fd70aff9eebebed5cbdf12b97a0d959bcb2dd46f253</citedby><cites>FETCH-LOGICAL-c509t-6c2009e24ccadc9ad5eb69fd70aff9eebebed5cbdf12b97a0d959bcb2dd46f253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861646/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861646/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24145032$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yazawa, Kenjiro</creatorcontrib><creatorcontrib>Furusawa, Hiroyuki</creatorcontrib><creatorcontrib>Okahata, Yoshio</creatorcontrib><title>Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Background: A device of QCM can be used in the transient kinetics of oxidation of a pair of cysteine residues in DsbA by DsbB.
Results: The obtained kinetic parameters indicate that the two pairs of cysteine residues in DsbB are important.
Conclusion: The reaction pathway of almost all DsbA oxidation processes would proceed through the stable intermediate.
Significance: The transient kinetics of the reaction intermediate is important.</description><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Disulfide Bond Formation Protein</subject><subject>Disulfides - chemistry</subject><subject>Enzyme Kinetics</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Immobilized Proteins - chemistry</subject><subject>Immobilized Proteins - metabolism</subject><subject>Kinetics</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membrane Lipids</subject><subject>Membrane Proteins</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Molecular Biophysics</subject><subject>Mutation</subject><subject>Oxidation-Reduction</subject><subject>Protein Chemistry</subject><subject>Protein Disulfide-Isomerases - chemistry</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Stability</subject><subject>Quartz Crystal Microbalance</subject><subject>Quartz Crystal Microbalance Techniques</subject><subject>Solubility</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Supported Lipid Bilayer</subject><subject>Surface-Active Agents - chemistry</subject><subject>Transient Kinetic Analysis</subject><subject>Ubiquinone - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1UstuEzEUHSEQDYU1O-RlspjU9rziDVKStlCpEbQUiZ3lx53E1YxdbCcl_V4-BLdTCiywF36c4-N7j06WvSV4SnBTHl1LNV0RUkwrwmZN_SwbETwr8qIi355nI4wpyRmtZgfZqxCucRolIy-zA1qSssIFHWU_L0F0eTQ9oJWzJjpv7Bq5Fp3ZCL4HbUSEgC5hl3gBxQ2kvVDROIs-i7i5FXtk7MP91ca4Lj82Ydu1RgM6-aE2wq4BSYi3ABb9gRbOanTqfC8GIe8iJJU5Gh8HOZ8gkeDFw2ExQYkg0Ap66YWF3PS9k6Yzd6DRxVb4eIeWfh-i6NDKKO-k6IRVgMYXy9UEfUkI9K-zF22qHt48rofZ19OTq-XH_PzTh7Pl_DxXFWYxrxXFmAEtlRJaMaErkDVrdYNF2zIAmaaulNQtoZI1AmtWMakk1bqsW1oVh9n7QfdmK5N1Cmz0ouM33vTC77kThv-LWLPha7fjxawmdVkngfGjgHfftxAi701Q0KWWwG0DJ2XTVDUllCTq0UBNPYfgoX36hmB-nw2essHvs8GHbKQX7_6u7on_OwyJwAYCJI92BjwPykAyUxsPKnLtzH_FfwHAWc6P</recordid><startdate>20131213</startdate><enddate>20131213</enddate><creator>Yazawa, Kenjiro</creator><creator>Furusawa, Hiroyuki</creator><creator>Okahata, Yoshio</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131213</creationdate><title>Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System</title><author>Yazawa, Kenjiro ; Furusawa, Hiroyuki ; Okahata, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6c2009e24ccadc9ad5eb69fd70aff9eebebed5cbdf12b97a0d959bcb2dd46f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Disulfide Bond Formation Protein</topic><topic>Disulfides - chemistry</topic><topic>Enzyme Kinetics</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Immobilized Proteins - chemistry</topic><topic>Immobilized Proteins - metabolism</topic><topic>Kinetics</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membrane Lipids</topic><topic>Membrane Proteins</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Molecular Biophysics</topic><topic>Mutation</topic><topic>Oxidation-Reduction</topic><topic>Protein Chemistry</topic><topic>Protein Disulfide-Isomerases - chemistry</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Stability</topic><topic>Quartz Crystal Microbalance</topic><topic>Quartz Crystal Microbalance Techniques</topic><topic>Solubility</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Supported Lipid Bilayer</topic><topic>Surface-Active Agents - chemistry</topic><topic>Transient Kinetic Analysis</topic><topic>Ubiquinone - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazawa, Kenjiro</creatorcontrib><creatorcontrib>Furusawa, Hiroyuki</creatorcontrib><creatorcontrib>Okahata, Yoshio</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazawa, Kenjiro</au><au>Furusawa, Hiroyuki</au><au>Okahata, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-12-13</date><risdate>2013</risdate><volume>288</volume><issue>50</issue><spage>35969</spage><epage>35981</epage><pages>35969-35981</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone.
Background: A device of QCM can be used in the transient kinetics of oxidation of a pair of cysteine residues in DsbA by DsbB.
Results: The obtained kinetic parameters indicate that the two pairs of cysteine residues in DsbB are important.
Conclusion: The reaction pathway of almost all DsbA oxidation processes would proceed through the stable intermediate.
Significance: The transient kinetics of the reaction intermediate is important.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24145032</pmid><doi>10.1074/jbc.M113.519876</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2013-12, Vol.288 (50), p.35969-35981 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861646 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Disulfide Bond Formation Protein Disulfides - chemistry Enzyme Kinetics Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Immobilized Proteins - chemistry Immobilized Proteins - metabolism Kinetics Lipid Bilayers - chemistry Membrane Lipids Membrane Proteins Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Molecular Biophysics Mutation Oxidation-Reduction Protein Chemistry Protein Disulfide-Isomerases - chemistry Protein Disulfide-Isomerases - genetics Protein Disulfide-Isomerases - metabolism Protein Stability Quartz Crystal Microbalance Quartz Crystal Microbalance Techniques Solubility Sulfhydryl Compounds - chemistry Supported Lipid Bilayer Surface-Active Agents - chemistry Transient Kinetic Analysis Ubiquinone - metabolism |
title | Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20Monitoring%20of%20Intermediates%20Reveals%20the%20Reaction%20Pathway%20in%20the%20Thiol-Disulfide%20Exchange%20between%20Disulfide%20Bond%20Formation%20Protein%20A%20(DsbA)%20and%20B%20(DsbB)%20on%20a%20Membrane-immobilized%20Quartz%20Crystal%20Microbalance%20(QCM)%20System&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Yazawa,%20Kenjiro&rft.date=2013-12-13&rft.volume=288&rft.issue=50&rft.spage=35969&rft.epage=35981&rft.pages=35969-35981&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.519876&rft_dat=%3Cproquest_pubme%3E1477562121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477562121&rft_id=info:pmid/24145032&rft_els_id=S0021925819543186&rfr_iscdi=true |