The spatial segregation of pericentric cohesin and condensin in the mitotic spindle
In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we d...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2013-12, Vol.24 (24), p.3909-3919 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3919 |
---|---|
container_issue | 24 |
container_start_page | 3909 |
container_title | Molecular biology of the cell |
container_volume | 24 |
creator | Stephens, Andrew D Quammen, Cory W Chang, Binny Haase, Julian Taylor, 2nd, Russell M Bloom, Kerry |
description | In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring. |
doi_str_mv | 10.1091/mbc.E13-06-0325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469218276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</originalsourceid><addsrcrecordid>eNpVUctKxDAUDaI442PtTrp00zGv5rERRHzBgAt1HdL0dibSJrXpCP69GV8ohJuT5NyTwz0InRC8IFiT8752i2vCSixKzGi1g-ZEM13ySondjHGlS1JRPkMHKb1gTDgXch_NKM-3ksk5enxaQ5EGO3nbFQlWI6wyjqGIbTHA6B2EKdfCxTUkHwobmoxDA2F7ymvK_b2f4pRJafCh6eAI7bW2S3D8vR-i55vrp6u7cvlwe391uSwdZ3oqHVBKVKsqV1shKt5WWgtpNSO4UdbWitVC1m2jmraV4KQmDaVOclorJ6Cq2SG6-NIdNnUPzadV25lh9L0d30203vx_CX5tVvHNMCUIViILnH0LjPF1A2kyvU8Ous4GiJtkCBc6W6RySz3_oroxpjRC-_sNwWYbhclRGCDMYGG2UeSO07_ufvk_s2cfxLuHsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469218276</pqid></control><display><type>article</type><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry</creator><contributor>Zheng, Yixian</contributor><creatorcontrib>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry ; Zheng, Yixian</creatorcontrib><description>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E13-06-0325</identifier><identifier>PMID: 24152737</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Adenosine Triphosphatases - metabolism ; Cell Cycle Proteins - metabolism ; Centromere - genetics ; Chromatin - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesins ; Computer Simulation ; DNA-Binding Proteins - metabolism ; Kinetochores ; Microtubules ; Mitosis - genetics ; Multiprotein Complexes - metabolism ; Nuclear Proteins - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Sirtuin 2 - genetics ; Spindle Apparatus - genetics</subject><ispartof>Molecular biology of the cell, 2013-12, Vol.24 (24), p.3909-3919</ispartof><rights>2013 Stephens This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</citedby><cites>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24152737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zheng, Yixian</contributor><creatorcontrib>Stephens, Andrew D</creatorcontrib><creatorcontrib>Quammen, Cory W</creatorcontrib><creatorcontrib>Chang, Binny</creatorcontrib><creatorcontrib>Haase, Julian</creatorcontrib><creatorcontrib>Taylor, 2nd, Russell M</creatorcontrib><creatorcontrib>Bloom, Kerry</creatorcontrib><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Centromere - genetics</subject><subject>Chromatin - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesins</subject><subject>Computer Simulation</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Kinetochores</subject><subject>Microtubules</subject><subject>Mitosis - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Sirtuin 2 - genetics</subject><subject>Spindle Apparatus - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctKxDAUDaI442PtTrp00zGv5rERRHzBgAt1HdL0dibSJrXpCP69GV8ohJuT5NyTwz0InRC8IFiT8752i2vCSixKzGi1g-ZEM13ySondjHGlS1JRPkMHKb1gTDgXch_NKM-3ksk5enxaQ5EGO3nbFQlWI6wyjqGIbTHA6B2EKdfCxTUkHwobmoxDA2F7ymvK_b2f4pRJafCh6eAI7bW2S3D8vR-i55vrp6u7cvlwe391uSwdZ3oqHVBKVKsqV1shKt5WWgtpNSO4UdbWitVC1m2jmraV4KQmDaVOclorJ6Cq2SG6-NIdNnUPzadV25lh9L0d30203vx_CX5tVvHNMCUIViILnH0LjPF1A2kyvU8Ous4GiJtkCBc6W6RySz3_oroxpjRC-_sNwWYbhclRGCDMYGG2UeSO07_ufvk_s2cfxLuHsQ</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Stephens, Andrew D</creator><creator>Quammen, Cory W</creator><creator>Chang, Binny</creator><creator>Haase, Julian</creator><creator>Taylor, 2nd, Russell M</creator><creator>Bloom, Kerry</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131215</creationdate><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><author>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Centromere - genetics</topic><topic>Chromatin - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesins</topic><topic>Computer Simulation</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Kinetochores</topic><topic>Microtubules</topic><topic>Mitosis - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Sirtuin 2 - genetics</topic><topic>Spindle Apparatus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, Andrew D</creatorcontrib><creatorcontrib>Quammen, Cory W</creatorcontrib><creatorcontrib>Chang, Binny</creatorcontrib><creatorcontrib>Haase, Julian</creatorcontrib><creatorcontrib>Taylor, 2nd, Russell M</creatorcontrib><creatorcontrib>Bloom, Kerry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, Andrew D</au><au>Quammen, Cory W</au><au>Chang, Binny</au><au>Haase, Julian</au><au>Taylor, 2nd, Russell M</au><au>Bloom, Kerry</au><au>Zheng, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2013-12-15</date><risdate>2013</risdate><volume>24</volume><issue>24</issue><spage>3909</spage><epage>3919</epage><pages>3909-3919</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>24152737</pmid><doi>10.1091/mbc.E13-06-0325</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2013-12, Vol.24 (24), p.3909-3919 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861086 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - metabolism Cell Cycle Proteins - metabolism Centromere - genetics Chromatin - genetics Chromosomal Proteins, Non-Histone - metabolism Cohesins Computer Simulation DNA-Binding Proteins - metabolism Kinetochores Microtubules Mitosis - genetics Multiprotein Complexes - metabolism Nuclear Proteins - genetics Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics Sirtuin 2 - genetics Spindle Apparatus - genetics |
title | The spatial segregation of pericentric cohesin and condensin in the mitotic spindle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatial%20segregation%20of%20pericentric%20cohesin%20and%20condensin%20in%20the%20mitotic%20spindle&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Stephens,%20Andrew%20D&rft.date=2013-12-15&rft.volume=24&rft.issue=24&rft.spage=3909&rft.epage=3919&rft.pages=3909-3919&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E13-06-0325&rft_dat=%3Cproquest_pubme%3E1469218276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469218276&rft_id=info:pmid/24152737&rfr_iscdi=true |