The spatial segregation of pericentric cohesin and condensin in the mitotic spindle

In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2013-12, Vol.24 (24), p.3909-3919
Hauptverfasser: Stephens, Andrew D, Quammen, Cory W, Chang, Binny, Haase, Julian, Taylor, 2nd, Russell M, Bloom, Kerry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3919
container_issue 24
container_start_page 3909
container_title Molecular biology of the cell
container_volume 24
creator Stephens, Andrew D
Quammen, Cory W
Chang, Binny
Haase, Julian
Taylor, 2nd, Russell M
Bloom, Kerry
description In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.
doi_str_mv 10.1091/mbc.E13-06-0325
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469218276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</originalsourceid><addsrcrecordid>eNpVUctKxDAUDaI442PtTrp00zGv5rERRHzBgAt1HdL0dibSJrXpCP69GV8ohJuT5NyTwz0InRC8IFiT8752i2vCSixKzGi1g-ZEM13ySondjHGlS1JRPkMHKb1gTDgXch_NKM-3ksk5enxaQ5EGO3nbFQlWI6wyjqGIbTHA6B2EKdfCxTUkHwobmoxDA2F7ymvK_b2f4pRJafCh6eAI7bW2S3D8vR-i55vrp6u7cvlwe391uSwdZ3oqHVBKVKsqV1shKt5WWgtpNSO4UdbWitVC1m2jmraV4KQmDaVOclorJ6Cq2SG6-NIdNnUPzadV25lh9L0d30203vx_CX5tVvHNMCUIViILnH0LjPF1A2kyvU8Ous4GiJtkCBc6W6RySz3_oroxpjRC-_sNwWYbhclRGCDMYGG2UeSO07_ufvk_s2cfxLuHsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469218276</pqid></control><display><type>article</type><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry</creator><contributor>Zheng, Yixian</contributor><creatorcontrib>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry ; Zheng, Yixian</creatorcontrib><description>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E13-06-0325</identifier><identifier>PMID: 24152737</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Adenosine Triphosphatases - metabolism ; Cell Cycle Proteins - metabolism ; Centromere - genetics ; Chromatin - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Cohesins ; Computer Simulation ; DNA-Binding Proteins - metabolism ; Kinetochores ; Microtubules ; Mitosis - genetics ; Multiprotein Complexes - metabolism ; Nuclear Proteins - genetics ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics ; Sirtuin 2 - genetics ; Spindle Apparatus - genetics</subject><ispartof>Molecular biology of the cell, 2013-12, Vol.24 (24), p.3909-3919</ispartof><rights>2013 Stephens This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License ( ). 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</citedby><cites>FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861086/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861086/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24152737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zheng, Yixian</contributor><creatorcontrib>Stephens, Andrew D</creatorcontrib><creatorcontrib>Quammen, Cory W</creatorcontrib><creatorcontrib>Chang, Binny</creatorcontrib><creatorcontrib>Haase, Julian</creatorcontrib><creatorcontrib>Taylor, 2nd, Russell M</creatorcontrib><creatorcontrib>Bloom, Kerry</creatorcontrib><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Centromere - genetics</subject><subject>Chromatin - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Cohesins</subject><subject>Computer Simulation</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Kinetochores</subject><subject>Microtubules</subject><subject>Mitosis - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</subject><subject>Sirtuin 2 - genetics</subject><subject>Spindle Apparatus - genetics</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUctKxDAUDaI442PtTrp00zGv5rERRHzBgAt1HdL0dibSJrXpCP69GV8ohJuT5NyTwz0InRC8IFiT8752i2vCSixKzGi1g-ZEM13ySondjHGlS1JRPkMHKb1gTDgXch_NKM-3ksk5enxaQ5EGO3nbFQlWI6wyjqGIbTHA6B2EKdfCxTUkHwobmoxDA2F7ymvK_b2f4pRJafCh6eAI7bW2S3D8vR-i55vrp6u7cvlwe391uSwdZ3oqHVBKVKsqV1shKt5WWgtpNSO4UdbWitVC1m2jmraV4KQmDaVOclorJ6Cq2SG6-NIdNnUPzadV25lh9L0d30203vx_CX5tVvHNMCUIViILnH0LjPF1A2kyvU8Ous4GiJtkCBc6W6RySz3_oroxpjRC-_sNwWYbhclRGCDMYGG2UeSO07_ufvk_s2cfxLuHsQ</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Stephens, Andrew D</creator><creator>Quammen, Cory W</creator><creator>Chang, Binny</creator><creator>Haase, Julian</creator><creator>Taylor, 2nd, Russell M</creator><creator>Bloom, Kerry</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131215</creationdate><title>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</title><author>Stephens, Andrew D ; Quammen, Cory W ; Chang, Binny ; Haase, Julian ; Taylor, 2nd, Russell M ; Bloom, Kerry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-ce2218f85cba6654f59967a9310d8aab83b67bfd8dff7ec791d22c742b8c6e5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Centromere - genetics</topic><topic>Chromatin - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Cohesins</topic><topic>Computer Simulation</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Kinetochores</topic><topic>Microtubules</topic><topic>Mitosis - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics</topic><topic>Sirtuin 2 - genetics</topic><topic>Spindle Apparatus - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stephens, Andrew D</creatorcontrib><creatorcontrib>Quammen, Cory W</creatorcontrib><creatorcontrib>Chang, Binny</creatorcontrib><creatorcontrib>Haase, Julian</creatorcontrib><creatorcontrib>Taylor, 2nd, Russell M</creatorcontrib><creatorcontrib>Bloom, Kerry</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stephens, Andrew D</au><au>Quammen, Cory W</au><au>Chang, Binny</au><au>Haase, Julian</au><au>Taylor, 2nd, Russell M</au><au>Bloom, Kerry</au><au>Zheng, Yixian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The spatial segregation of pericentric cohesin and condensin in the mitotic spindle</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2013-12-15</date><risdate>2013</risdate><volume>24</volume><issue>24</issue><spage>3909</spage><epage>3919</epage><pages>3909-3919</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>In mitosis, the pericentromere is organized into a spring composed of cohesin, condensin, and a rosette of intramolecular chromatin loops. Cohesin and condensin are enriched in the pericentromere, with spatially distinct patterns of localization. Using model convolution of computer simulations, we deduce the mechanistic consequences of their spatial segregation. Condensin lies proximal to the spindle axis, whereas cohesin is radially displaced from condensin and the interpolar microtubules. The histone deacetylase Sir2 is responsible for the axial position of condensin, while the radial displacement of chromatin loops dictates the position of cohesin. The heterogeneity in distribution of condensin is most accurately modeled by clusters along the spindle axis. In contrast, cohesin is evenly distributed (barrel of 500-nm width × 550-nm length). Models of cohesin gradients that decay from the centromere or sister cohesin axis, as previously suggested, do not match experimental images. The fine structures of cohesin and condensin deduced with subpixel localization accuracy reveal critical features of how these complexes mold pericentric chromatin into a functional spring.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>24152737</pmid><doi>10.1091/mbc.E13-06-0325</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2013-12, Vol.24 (24), p.3909-3919
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3861086
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - metabolism
Cell Cycle Proteins - metabolism
Centromere - genetics
Chromatin - genetics
Chromosomal Proteins, Non-Histone - metabolism
Cohesins
Computer Simulation
DNA-Binding Proteins - metabolism
Kinetochores
Microtubules
Mitosis - genetics
Multiprotein Complexes - metabolism
Nuclear Proteins - genetics
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Silent Information Regulator Proteins, Saccharomyces cerevisiae - genetics
Sirtuin 2 - genetics
Spindle Apparatus - genetics
title The spatial segregation of pericentric cohesin and condensin in the mitotic spindle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20spatial%20segregation%20of%20pericentric%20cohesin%20and%20condensin%20in%20the%20mitotic%20spindle&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Stephens,%20Andrew%20D&rft.date=2013-12-15&rft.volume=24&rft.issue=24&rft.spage=3909&rft.epage=3919&rft.pages=3909-3919&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E13-06-0325&rft_dat=%3Cproquest_pubme%3E1469218276%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469218276&rft_id=info:pmid/24152737&rfr_iscdi=true