Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells

In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced healthcare materials 2013-12, Vol.2 (12), p.1651-1659
Hauptverfasser: Kievit, Forrest M., Cooper, Ashleigh, Jana, Soumen, Leung, Matthew C., Wang, Kui, Edmondson, Dennis, Wood, David, Lee, Jerry S. H., Ellenbogen, Richard G., Zhang, Miqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1659
container_issue 12
container_start_page 1651
container_title Advanced healthcare materials
container_volume 2
creator Kievit, Forrest M.
Cooper, Ashleigh
Jana, Soumen
Leung, Matthew C.
Wang, Kui
Edmondson, Dennis
Wood, David
Lee, Jerry S. H.
Ellenbogen, Richard G.
Zhang, Miqin
description In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM. Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.
doi_str_mv 10.1002/adhm.201300092
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3448408191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EolXolSNaiQuXDbbXH-sLUpRCivpBkaBws7ze2cTFa6f2Bsh_z0YpUeECkqWxPL_35JmH0HOCpwRj-tq0q35KMakwxoo-QseUKFpSwdXjw53hI3SS8-2IYMGJqMlTdEQrKQWp5TFqZt4tA7TFfOWGmE0or6PfWrNO0Rs7xADF7qHxENriyoTYuQZSLq5T7OMAxbCC4tItkxlcDEXsioV3sfEmD7E3xRy8z8_Qk874DCf3dYI-v3v7aX5WXnxYvJ_PLkrLJaVl10GHmawY1I3itCXEGsZa0WBr1Xg6yRWrqGXGWNoxgaUExUExw3irpKwm6M3ed71pemgthCEZr9fJ9SZtdTRO_9kJbqWX8buuaq7kuMUJenVvkOLdBvKge5ftOIIJEDdZE4mVZFRh-T8oYXVFyQ59-Rd6GzcpjJvQhAshJMakHqnpnrIp5pygO_ybYL0LW-_C1oewR8GLh9Me8N_RjoDaAz-ch-0_7PTs9OzyoXm517o8wM-D1qRvWshKcv3laqG_frw5Pa_ZjT6vfgH2OsYz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566670018</pqid></control><display><type>article</type><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</creator><creatorcontrib>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</creatorcontrib><description>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM. Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201300092</identifier><identifier>PMID: 23776187</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alignment ; cancer ; Cell Division - drug effects ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Shape - drug effects ; Chitosan - chemistry ; Chitosan - pharmacology ; Culture ; EMT ; Fibers ; Gene Expression - drug effects ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Human ; Humans ; in vitro model ; In vitro testing ; microenvironment ; migration ; nanofiber ; Nanofibers ; Nanofibers - chemistry ; Nanostructure ; Polyesters - chemistry ; Polyesters - pharmacology ; Therapy</subject><ispartof>Advanced healthcare materials, 2013-12, Vol.2 (12), p.1651-1659</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</citedby><cites>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201300092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201300092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23776187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kievit, Forrest M.</creatorcontrib><creatorcontrib>Cooper, Ashleigh</creatorcontrib><creatorcontrib>Jana, Soumen</creatorcontrib><creatorcontrib>Leung, Matthew C.</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Edmondson, Dennis</creatorcontrib><creatorcontrib>Wood, David</creatorcontrib><creatorcontrib>Lee, Jerry S. H.</creatorcontrib><creatorcontrib>Ellenbogen, Richard G.</creatorcontrib><creatorcontrib>Zhang, Miqin</creatorcontrib><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><title>Advanced healthcare materials</title><addtitle>Advanced Healthcare Materials</addtitle><description>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM. Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</description><subject>Alignment</subject><subject>cancer</subject><subject>Cell Division - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Culture</subject><subject>EMT</subject><subject>Fibers</subject><subject>Gene Expression - drug effects</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Human</subject><subject>Humans</subject><subject>in vitro model</subject><subject>In vitro testing</subject><subject>microenvironment</subject><subject>migration</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanostructure</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Therapy</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vEzEQxS0EolXolSNaiQuXDbbXH-sLUpRCivpBkaBws7ze2cTFa6f2Bsh_z0YpUeECkqWxPL_35JmH0HOCpwRj-tq0q35KMakwxoo-QseUKFpSwdXjw53hI3SS8-2IYMGJqMlTdEQrKQWp5TFqZt4tA7TFfOWGmE0or6PfWrNO0Rs7xADF7qHxENriyoTYuQZSLq5T7OMAxbCC4tItkxlcDEXsioV3sfEmD7E3xRy8z8_Qk874DCf3dYI-v3v7aX5WXnxYvJ_PLkrLJaVl10GHmawY1I3itCXEGsZa0WBr1Xg6yRWrqGXGWNoxgaUExUExw3irpKwm6M3ed71pemgthCEZr9fJ9SZtdTRO_9kJbqWX8buuaq7kuMUJenVvkOLdBvKge5ftOIIJEDdZE4mVZFRh-T8oYXVFyQ59-Rd6GzcpjJvQhAshJMakHqnpnrIp5pygO_ybYL0LW-_C1oewR8GLh9Me8N_RjoDaAz-ch-0_7PTs9OzyoXm517o8wM-D1qRvWshKcv3laqG_frw5Pa_ZjT6vfgH2OsYz</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Kievit, Forrest M.</creator><creator>Cooper, Ashleigh</creator><creator>Jana, Soumen</creator><creator>Leung, Matthew C.</creator><creator>Wang, Kui</creator><creator>Edmondson, Dennis</creator><creator>Wood, David</creator><creator>Lee, Jerry S. H.</creator><creator>Ellenbogen, Richard G.</creator><creator>Zhang, Miqin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><author>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alignment</topic><topic>cancer</topic><topic>Cell Division - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Culture</topic><topic>EMT</topic><topic>Fibers</topic><topic>Gene Expression - drug effects</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Human</topic><topic>Humans</topic><topic>in vitro model</topic><topic>In vitro testing</topic><topic>microenvironment</topic><topic>migration</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanostructure</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kievit, Forrest M.</creatorcontrib><creatorcontrib>Cooper, Ashleigh</creatorcontrib><creatorcontrib>Jana, Soumen</creatorcontrib><creatorcontrib>Leung, Matthew C.</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Edmondson, Dennis</creatorcontrib><creatorcontrib>Wood, David</creatorcontrib><creatorcontrib>Lee, Jerry S. H.</creatorcontrib><creatorcontrib>Ellenbogen, Richard G.</creatorcontrib><creatorcontrib>Zhang, Miqin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kievit, Forrest M.</au><au>Cooper, Ashleigh</au><au>Jana, Soumen</au><au>Leung, Matthew C.</au><au>Wang, Kui</au><au>Edmondson, Dennis</au><au>Wood, David</au><au>Lee, Jerry S. H.</au><au>Ellenbogen, Richard G.</au><au>Zhang, Miqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Advanced Healthcare Materials</addtitle><date>2013-12</date><risdate>2013</risdate><volume>2</volume><issue>12</issue><spage>1651</spage><epage>1659</epage><pages>1651-1659</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM. Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23776187</pmid><doi>10.1002/adhm.201300092</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-2640
ispartof Advanced healthcare materials, 2013-12, Vol.2 (12), p.1651-1659
issn 2192-2640
2192-2659
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859701
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alignment
cancer
Cell Division - drug effects
Cell Line, Tumor
Cell Movement - drug effects
Cell Shape - drug effects
Chitosan - chemistry
Chitosan - pharmacology
Culture
EMT
Fibers
Gene Expression - drug effects
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Human
Humans
in vitro model
In vitro testing
microenvironment
migration
nanofiber
Nanofibers
Nanofibers - chemistry
Nanostructure
Polyesters - chemistry
Polyesters - pharmacology
Therapy
title Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aligned%20Chitosan-Polycaprolactone%20Polyblend%20Nanofibers%20Promote%20the%20Migration%20of%20Glioblastoma%20Cells&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Kievit,%20Forrest%20M.&rft.date=2013-12&rft.volume=2&rft.issue=12&rft.spage=1651&rft.epage=1659&rft.pages=1651-1659&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201300092&rft_dat=%3Cproquest_pubme%3E3448408191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566670018&rft_id=info:pmid/23776187&rfr_iscdi=true