Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells
In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human...
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2013-12, Vol.2 (12), p.1651-1659 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1659 |
---|---|
container_issue | 12 |
container_start_page | 1651 |
container_title | Advanced healthcare materials |
container_volume | 2 |
creator | Kievit, Forrest M. Cooper, Ashleigh Jana, Soumen Leung, Matthew C. Wang, Kui Edmondson, Dennis Wood, David Lee, Jerry S. H. Ellenbogen, Richard G. Zhang, Miqin |
description | In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM.
Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme. |
doi_str_mv | 10.1002/adhm.201300092 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3448408191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxS0EolXolSNaiQuXDbbXH-sLUpRCivpBkaBws7ze2cTFa6f2Bsh_z0YpUeECkqWxPL_35JmH0HOCpwRj-tq0q35KMakwxoo-QseUKFpSwdXjw53hI3SS8-2IYMGJqMlTdEQrKQWp5TFqZt4tA7TFfOWGmE0or6PfWrNO0Rs7xADF7qHxENriyoTYuQZSLq5T7OMAxbCC4tItkxlcDEXsioV3sfEmD7E3xRy8z8_Qk874DCf3dYI-v3v7aX5WXnxYvJ_PLkrLJaVl10GHmawY1I3itCXEGsZa0WBr1Xg6yRWrqGXGWNoxgaUExUExw3irpKwm6M3ed71pemgthCEZr9fJ9SZtdTRO_9kJbqWX8buuaq7kuMUJenVvkOLdBvKge5ftOIIJEDdZE4mVZFRh-T8oYXVFyQ59-Rd6GzcpjJvQhAshJMakHqnpnrIp5pygO_ybYL0LW-_C1oewR8GLh9Me8N_RjoDaAz-ch-0_7PTs9OzyoXm517o8wM-D1qRvWshKcv3laqG_frw5Pa_ZjT6vfgH2OsYz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566670018</pqid></control><display><type>article</type><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</creator><creatorcontrib>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</creatorcontrib><description>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM.
Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</description><identifier>ISSN: 2192-2640</identifier><identifier>EISSN: 2192-2659</identifier><identifier>DOI: 10.1002/adhm.201300092</identifier><identifier>PMID: 23776187</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alignment ; cancer ; Cell Division - drug effects ; Cell Line, Tumor ; Cell Movement - drug effects ; Cell Shape - drug effects ; Chitosan - chemistry ; Chitosan - pharmacology ; Culture ; EMT ; Fibers ; Gene Expression - drug effects ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Human ; Humans ; in vitro model ; In vitro testing ; microenvironment ; migration ; nanofiber ; Nanofibers ; Nanofibers - chemistry ; Nanostructure ; Polyesters - chemistry ; Polyesters - pharmacology ; Therapy</subject><ispartof>Advanced healthcare materials, 2013-12, Vol.2 (12), p.1651-1659</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</citedby><cites>FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadhm.201300092$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadhm.201300092$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23776187$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kievit, Forrest M.</creatorcontrib><creatorcontrib>Cooper, Ashleigh</creatorcontrib><creatorcontrib>Jana, Soumen</creatorcontrib><creatorcontrib>Leung, Matthew C.</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Edmondson, Dennis</creatorcontrib><creatorcontrib>Wood, David</creatorcontrib><creatorcontrib>Lee, Jerry S. H.</creatorcontrib><creatorcontrib>Ellenbogen, Richard G.</creatorcontrib><creatorcontrib>Zhang, Miqin</creatorcontrib><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><title>Advanced healthcare materials</title><addtitle>Advanced Healthcare Materials</addtitle><description>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM.
Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</description><subject>Alignment</subject><subject>cancer</subject><subject>Cell Division - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Chitosan - chemistry</subject><subject>Chitosan - pharmacology</subject><subject>Culture</subject><subject>EMT</subject><subject>Fibers</subject><subject>Gene Expression - drug effects</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Human</subject><subject>Humans</subject><subject>in vitro model</subject><subject>In vitro testing</subject><subject>microenvironment</subject><subject>migration</subject><subject>nanofiber</subject><subject>Nanofibers</subject><subject>Nanofibers - chemistry</subject><subject>Nanostructure</subject><subject>Polyesters - chemistry</subject><subject>Polyesters - pharmacology</subject><subject>Therapy</subject><issn>2192-2640</issn><issn>2192-2659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1vEzEQxS0EolXolSNaiQuXDbbXH-sLUpRCivpBkaBws7ze2cTFa6f2Bsh_z0YpUeECkqWxPL_35JmH0HOCpwRj-tq0q35KMakwxoo-QseUKFpSwdXjw53hI3SS8-2IYMGJqMlTdEQrKQWp5TFqZt4tA7TFfOWGmE0or6PfWrNO0Rs7xADF7qHxENriyoTYuQZSLq5T7OMAxbCC4tItkxlcDEXsioV3sfEmD7E3xRy8z8_Qk874DCf3dYI-v3v7aX5WXnxYvJ_PLkrLJaVl10GHmawY1I3itCXEGsZa0WBr1Xg6yRWrqGXGWNoxgaUExUExw3irpKwm6M3ed71pemgthCEZr9fJ9SZtdTRO_9kJbqWX8buuaq7kuMUJenVvkOLdBvKge5ftOIIJEDdZE4mVZFRh-T8oYXVFyQ59-Rd6GzcpjJvQhAshJMakHqnpnrIp5pygO_ybYL0LW-_C1oewR8GLh9Me8N_RjoDaAz-ch-0_7PTs9OzyoXm517o8wM-D1qRvWshKcv3laqG_frw5Pa_ZjT6vfgH2OsYz</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Kievit, Forrest M.</creator><creator>Cooper, Ashleigh</creator><creator>Jana, Soumen</creator><creator>Leung, Matthew C.</creator><creator>Wang, Kui</creator><creator>Edmondson, Dennis</creator><creator>Wood, David</creator><creator>Lee, Jerry S. H.</creator><creator>Ellenbogen, Richard G.</creator><creator>Zhang, Miqin</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T5</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>201312</creationdate><title>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</title><author>Kievit, Forrest M. ; Cooper, Ashleigh ; Jana, Soumen ; Leung, Matthew C. ; Wang, Kui ; Edmondson, Dennis ; Wood, David ; Lee, Jerry S. H. ; Ellenbogen, Richard G. ; Zhang, Miqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5722-ffef04734e8b952d11ca44d6b0cc9cc9f759432c4aac2f46077e95e94a45d9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alignment</topic><topic>cancer</topic><topic>Cell Division - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Chitosan - chemistry</topic><topic>Chitosan - pharmacology</topic><topic>Culture</topic><topic>EMT</topic><topic>Fibers</topic><topic>Gene Expression - drug effects</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Human</topic><topic>Humans</topic><topic>in vitro model</topic><topic>In vitro testing</topic><topic>microenvironment</topic><topic>migration</topic><topic>nanofiber</topic><topic>Nanofibers</topic><topic>Nanofibers - chemistry</topic><topic>Nanostructure</topic><topic>Polyesters - chemistry</topic><topic>Polyesters - pharmacology</topic><topic>Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kievit, Forrest M.</creatorcontrib><creatorcontrib>Cooper, Ashleigh</creatorcontrib><creatorcontrib>Jana, Soumen</creatorcontrib><creatorcontrib>Leung, Matthew C.</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Edmondson, Dennis</creatorcontrib><creatorcontrib>Wood, David</creatorcontrib><creatorcontrib>Lee, Jerry S. H.</creatorcontrib><creatorcontrib>Ellenbogen, Richard G.</creatorcontrib><creatorcontrib>Zhang, Miqin</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Immunology Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced healthcare materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kievit, Forrest M.</au><au>Cooper, Ashleigh</au><au>Jana, Soumen</au><au>Leung, Matthew C.</au><au>Wang, Kui</au><au>Edmondson, Dennis</au><au>Wood, David</au><au>Lee, Jerry S. H.</au><au>Ellenbogen, Richard G.</au><au>Zhang, Miqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells</atitle><jtitle>Advanced healthcare materials</jtitle><addtitle>Advanced Healthcare Materials</addtitle><date>2013-12</date><risdate>2013</risdate><volume>2</volume><issue>12</issue><spage>1651</spage><epage>1659</epage><pages>1651-1659</pages><issn>2192-2640</issn><eissn>2192-2659</eissn><abstract>In vitro models that accurately mimic the microenvironment of invading glioblastoma multiform (GBM) cells will provide a high‐throughput system for testing potential anti‐invasion therapies. Here, the ability of chitosan‐polycaprolactone polyblend nanofibers to promote a migratory phenotype in human GBM cells by altering the nanotopography of the nanofiber membranes is investigated. Fibers are prepared with diameters of 200 nm, 400 nm, and 1.1 μm, and are either randomly oriented or aligned to produce six distinct nanotopographies. Human U‐87 MG GBM cells, a model cell line commonly used for invasion assays, are cultured on the various nanofibrous substrates. Cells show elongation and alignment along the orientation of aligned fibers as early as 24 h and up to 120 h of culture. After 24 h of culture, human GBM cells cultured on aligned 200 nm and 400 nm fibers show marked upregulation of invasion‐related genes including β‐catenin, Snail, STAT3, TGF‐β, and Twist, suggesting a mesenchymal change in these migrating cells. Additionally, cells cultured on 400 nm aligned fibers show similar migration profiles as those reported in vivo, and thus these nanofibers should provide a unique high‐throughput in vitro culture substrate for developing anti‐migration therapies for the treatment of GBM.
Human glioblastoma cells cultured on various nanofiber topographies show marked differences in migratory behavior. Cells exhibit directional persistence on all aligned nanofiber of different diameters, but the migratory behavior is most similar to that in vivo on 400 nm fibers, which provides a unique in vitro culture substrate for development of therapies for treatment of glioblastoma multiforme.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23776187</pmid><doi>10.1002/adhm.201300092</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-2640 |
ispartof | Advanced healthcare materials, 2013-12, Vol.2 (12), p.1651-1659 |
issn | 2192-2640 2192-2659 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3859701 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alignment cancer Cell Division - drug effects Cell Line, Tumor Cell Movement - drug effects Cell Shape - drug effects Chitosan - chemistry Chitosan - pharmacology Culture EMT Fibers Gene Expression - drug effects Glioblastoma - genetics Glioblastoma - metabolism Glioblastoma - pathology Human Humans in vitro model In vitro testing microenvironment migration nanofiber Nanofibers Nanofibers - chemistry Nanostructure Polyesters - chemistry Polyesters - pharmacology Therapy |
title | Aligned Chitosan-Polycaprolactone Polyblend Nanofibers Promote the Migration of Glioblastoma Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aligned%20Chitosan-Polycaprolactone%20Polyblend%20Nanofibers%20Promote%20the%20Migration%20of%20Glioblastoma%20Cells&rft.jtitle=Advanced%20healthcare%20materials&rft.au=Kievit,%20Forrest%20M.&rft.date=2013-12&rft.volume=2&rft.issue=12&rft.spage=1651&rft.epage=1659&rft.pages=1651-1659&rft.issn=2192-2640&rft.eissn=2192-2659&rft_id=info:doi/10.1002/adhm.201300092&rft_dat=%3Cproquest_pubme%3E3448408191%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566670018&rft_id=info:pmid/23776187&rfr_iscdi=true |