Completion of the entire hepatitis C virus life cycle in genetically humanized mice

The entire hepatitis C virus life cycle can be recapitulated in an inbred mouse model, allowing preclinical assessment of antiviral therapeutics and vaccines. Humanized mouse model for hepatitis C infection In a 2009 Nature paper, Alexander Ploss and colleagues showed that transient expression of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-09, Vol.501 (7466), p.237-241
Hauptverfasser: Dorner, Marcus, Horwitz, Joshua A., Donovan, Bridget M., Labitt, Rachael N., Budell, William C., Friling, Tamar, Vogt, Alexander, Catanese, Maria Teresa, Satoh, Takashi, Kawai, Taro, Akira, Shizuo, Law, Mansun, Rice, Charles M., Ploss, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 7466
container_start_page 237
container_title Nature (London)
container_volume 501
creator Dorner, Marcus
Horwitz, Joshua A.
Donovan, Bridget M.
Labitt, Rachael N.
Budell, William C.
Friling, Tamar
Vogt, Alexander
Catanese, Maria Teresa
Satoh, Takashi
Kawai, Taro
Akira, Shizuo
Law, Mansun
Rice, Charles M.
Ploss, Alexander
description The entire hepatitis C virus life cycle can be recapitulated in an inbred mouse model, allowing preclinical assessment of antiviral therapeutics and vaccines. Humanized mouse model for hepatitis C infection In a 2009 Nature paper, Alexander Ploss and colleagues showed that transient expression of the human genes CD81 and occludin ( OCLN ) constituted a minimal set of cellular factors required for uptake of hepatitis C virus (HCV) into immune-competent mouse cells. Now they report that transgenic immune-deficient mice stably expressing CD81 and OCLN can sustain the complete HCV replication cycle with measurable viraemia. The availability of this genetically humanized mouse model opens the way to closer study of HCV infection in vivo and should provide a valuable platform for testing potential therapeutics. More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry 1 , we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice 2 . Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo . Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo . Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing d
doi_str_mv 10.1038/nature12427
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3858853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A342875893</galeid><sourcerecordid>A342875893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c678t-7568b464bd5da5a574ad4b042fdf318b7c688609da093cd0133e5aa7ef6d48133</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiMEokvhxB1Z9AKCFDv-iHNBqlZ8VKqEROFsOc4k6yqxt3ZSsfx6HG0puyjywbLnmdfjdybLXhJ8TjCVH5wepwCkYEX5KFsRVoqcCVk-zlYYFzLHkoqT7FmMNxhjTkr2NDspaIWp4HyVXa_9sO1htN4h36JxAwjcaAOgDWz1aEcb0Rrd2TBF1NsWkNmZHpB1qAOX0ozu-x3aTIN29jc0aLAGnmdPWt1HeHG_n2Y_P3_6sf6aX337crm-uMqNKOWYl1zImglWN7zRXPOS6YbVmBVt01Ii69IIKQWuGo0rahpMKAWudQmtaJhMp9Ps4153O9UDNCYVHnSvtsEOOuyU11YdR5zdqM7fKSq5lHwWeHMvEPztBHFUg40G-l478FNUhNFCEFHRGT37D73xU3Dpe4liPJlJC_KP6nQPyrrWp3fNLKouKCtkyWU1a-UL1OxnKtI7aG26PuJfL_Bma2_VIXS-AKXVQOrJourbo4TEjPBr7PQUo7q8_n7MvtuzJvgYA7QPJhOs5iFUB0OY6FeHfXlg_05dAt7vgZhCroNwYOaC3h_CHeR7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445365321</pqid></control><display><type>article</type><title>Completion of the entire hepatitis C virus life cycle in genetically humanized mice</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Dorner, Marcus ; Horwitz, Joshua A. ; Donovan, Bridget M. ; Labitt, Rachael N. ; Budell, William C. ; Friling, Tamar ; Vogt, Alexander ; Catanese, Maria Teresa ; Satoh, Takashi ; Kawai, Taro ; Akira, Shizuo ; Law, Mansun ; Rice, Charles M. ; Ploss, Alexander</creator><creatorcontrib>Dorner, Marcus ; Horwitz, Joshua A. ; Donovan, Bridget M. ; Labitt, Rachael N. ; Budell, William C. ; Friling, Tamar ; Vogt, Alexander ; Catanese, Maria Teresa ; Satoh, Takashi ; Kawai, Taro ; Akira, Shizuo ; Law, Mansun ; Rice, Charles M. ; Ploss, Alexander</creatorcontrib><description>The entire hepatitis C virus life cycle can be recapitulated in an inbred mouse model, allowing preclinical assessment of antiviral therapeutics and vaccines. Humanized mouse model for hepatitis C infection In a 2009 Nature paper, Alexander Ploss and colleagues showed that transient expression of the human genes CD81 and occludin ( OCLN ) constituted a minimal set of cellular factors required for uptake of hepatitis C virus (HCV) into immune-competent mouse cells. Now they report that transgenic immune-deficient mice stably expressing CD81 and OCLN can sustain the complete HCV replication cycle with measurable viraemia. The availability of this genetically humanized mouse model opens the way to closer study of HCV infection in vivo and should provide a valuable platform for testing potential therapeutics. More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry 1 , we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice 2 . Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo . Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo . Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12427</identifier><identifier>PMID: 23903655</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/596/1905 ; Animal models ; Animals ; Cell Line ; Cyclophilin A - genetics ; Cyclophilin A - metabolism ; Disease Models, Animal ; DNA sequencing ; Genetic aspects ; Genetic Engineering ; Genomes ; Hepacivirus - immunology ; Hepacivirus - physiology ; Hepatitis ; Hepatitis C - genetics ; Hepatitis C - immunology ; Hepatitis C - virology ; Hepatitis C virus ; Human factors ; Humanities and Social Sciences ; Humans ; Immune system ; Infections ; letter ; Life cycles ; Methods ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; multidisciplinary ; Nucleotide sequencing ; Occludin - genetics ; Occludin - metabolism ; Rodents ; Science ; STAT1 Transcription Factor - deficiency ; Tetraspanin 28 - genetics ; Tetraspanin 28 - metabolism ; Vaccines ; Viremia - virology ; Virion - growth &amp; development ; Virion - physiology ; Virus Replication</subject><ispartof>Nature (London), 2013-09, Vol.501 (7466), p.237-241</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 12, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c678t-7568b464bd5da5a574ad4b042fdf318b7c688609da093cd0133e5aa7ef6d48133</citedby><cites>FETCH-LOGICAL-c678t-7568b464bd5da5a574ad4b042fdf318b7c688609da093cd0133e5aa7ef6d48133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12427$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12427$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23903655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorner, Marcus</creatorcontrib><creatorcontrib>Horwitz, Joshua A.</creatorcontrib><creatorcontrib>Donovan, Bridget M.</creatorcontrib><creatorcontrib>Labitt, Rachael N.</creatorcontrib><creatorcontrib>Budell, William C.</creatorcontrib><creatorcontrib>Friling, Tamar</creatorcontrib><creatorcontrib>Vogt, Alexander</creatorcontrib><creatorcontrib>Catanese, Maria Teresa</creatorcontrib><creatorcontrib>Satoh, Takashi</creatorcontrib><creatorcontrib>Kawai, Taro</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Law, Mansun</creatorcontrib><creatorcontrib>Rice, Charles M.</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><title>Completion of the entire hepatitis C virus life cycle in genetically humanized mice</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The entire hepatitis C virus life cycle can be recapitulated in an inbred mouse model, allowing preclinical assessment of antiviral therapeutics and vaccines. Humanized mouse model for hepatitis C infection In a 2009 Nature paper, Alexander Ploss and colleagues showed that transient expression of the human genes CD81 and occludin ( OCLN ) constituted a minimal set of cellular factors required for uptake of hepatitis C virus (HCV) into immune-competent mouse cells. Now they report that transgenic immune-deficient mice stably expressing CD81 and OCLN can sustain the complete HCV replication cycle with measurable viraemia. The availability of this genetically humanized mouse model opens the way to closer study of HCV infection in vivo and should provide a valuable platform for testing potential therapeutics. More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry 1 , we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice 2 . Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo . Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo . Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.</description><subject>631/326/596/1905</subject><subject>Animal models</subject><subject>Animals</subject><subject>Cell Line</subject><subject>Cyclophilin A - genetics</subject><subject>Cyclophilin A - metabolism</subject><subject>Disease Models, Animal</subject><subject>DNA sequencing</subject><subject>Genetic aspects</subject><subject>Genetic Engineering</subject><subject>Genomes</subject><subject>Hepacivirus - immunology</subject><subject>Hepacivirus - physiology</subject><subject>Hepatitis</subject><subject>Hepatitis C - genetics</subject><subject>Hepatitis C - immunology</subject><subject>Hepatitis C - virology</subject><subject>Hepatitis C virus</subject><subject>Human factors</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Immune system</subject><subject>Infections</subject><subject>letter</subject><subject>Life cycles</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>multidisciplinary</subject><subject>Nucleotide sequencing</subject><subject>Occludin - genetics</subject><subject>Occludin - metabolism</subject><subject>Rodents</subject><subject>Science</subject><subject>STAT1 Transcription Factor - deficiency</subject><subject>Tetraspanin 28 - genetics</subject><subject>Tetraspanin 28 - metabolism</subject><subject>Vaccines</subject><subject>Viremia - virology</subject><subject>Virion - growth &amp; development</subject><subject>Virion - physiology</subject><subject>Virus Replication</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1v1DAQhiMEokvhxB1Z9AKCFDv-iHNBqlZ8VKqEROFsOc4k6yqxt3ZSsfx6HG0puyjywbLnmdfjdybLXhJ8TjCVH5wepwCkYEX5KFsRVoqcCVk-zlYYFzLHkoqT7FmMNxhjTkr2NDspaIWp4HyVXa_9sO1htN4h36JxAwjcaAOgDWz1aEcb0Rrd2TBF1NsWkNmZHpB1qAOX0ozu-x3aTIN29jc0aLAGnmdPWt1HeHG_n2Y_P3_6sf6aX337crm-uMqNKOWYl1zImglWN7zRXPOS6YbVmBVt01Ii69IIKQWuGo0rahpMKAWudQmtaJhMp9Ps4153O9UDNCYVHnSvtsEOOuyU11YdR5zdqM7fKSq5lHwWeHMvEPztBHFUg40G-l478FNUhNFCEFHRGT37D73xU3Dpe4liPJlJC_KP6nQPyrrWp3fNLKouKCtkyWU1a-UL1OxnKtI7aG26PuJfL_Bma2_VIXS-AKXVQOrJourbo4TEjPBr7PQUo7q8_n7MvtuzJvgYA7QPJhOs5iFUB0OY6FeHfXlg_05dAt7vgZhCroNwYOaC3h_CHeR7</recordid><startdate>20130912</startdate><enddate>20130912</enddate><creator>Dorner, Marcus</creator><creator>Horwitz, Joshua A.</creator><creator>Donovan, Bridget M.</creator><creator>Labitt, Rachael N.</creator><creator>Budell, William C.</creator><creator>Friling, Tamar</creator><creator>Vogt, Alexander</creator><creator>Catanese, Maria Teresa</creator><creator>Satoh, Takashi</creator><creator>Kawai, Taro</creator><creator>Akira, Shizuo</creator><creator>Law, Mansun</creator><creator>Rice, Charles M.</creator><creator>Ploss, Alexander</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130912</creationdate><title>Completion of the entire hepatitis C virus life cycle in genetically humanized mice</title><author>Dorner, Marcus ; Horwitz, Joshua A. ; Donovan, Bridget M. ; Labitt, Rachael N. ; Budell, William C. ; Friling, Tamar ; Vogt, Alexander ; Catanese, Maria Teresa ; Satoh, Takashi ; Kawai, Taro ; Akira, Shizuo ; Law, Mansun ; Rice, Charles M. ; Ploss, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c678t-7568b464bd5da5a574ad4b042fdf318b7c688609da093cd0133e5aa7ef6d48133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/326/596/1905</topic><topic>Animal models</topic><topic>Animals</topic><topic>Cell Line</topic><topic>Cyclophilin A - genetics</topic><topic>Cyclophilin A - metabolism</topic><topic>Disease Models, Animal</topic><topic>DNA sequencing</topic><topic>Genetic aspects</topic><topic>Genetic Engineering</topic><topic>Genomes</topic><topic>Hepacivirus - immunology</topic><topic>Hepacivirus - physiology</topic><topic>Hepatitis</topic><topic>Hepatitis C - genetics</topic><topic>Hepatitis C - immunology</topic><topic>Hepatitis C - virology</topic><topic>Hepatitis C virus</topic><topic>Human factors</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Immune system</topic><topic>Infections</topic><topic>letter</topic><topic>Life cycles</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>multidisciplinary</topic><topic>Nucleotide sequencing</topic><topic>Occludin - genetics</topic><topic>Occludin - metabolism</topic><topic>Rodents</topic><topic>Science</topic><topic>STAT1 Transcription Factor - deficiency</topic><topic>Tetraspanin 28 - genetics</topic><topic>Tetraspanin 28 - metabolism</topic><topic>Vaccines</topic><topic>Viremia - virology</topic><topic>Virion - growth &amp; development</topic><topic>Virion - physiology</topic><topic>Virus Replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorner, Marcus</creatorcontrib><creatorcontrib>Horwitz, Joshua A.</creatorcontrib><creatorcontrib>Donovan, Bridget M.</creatorcontrib><creatorcontrib>Labitt, Rachael N.</creatorcontrib><creatorcontrib>Budell, William C.</creatorcontrib><creatorcontrib>Friling, Tamar</creatorcontrib><creatorcontrib>Vogt, Alexander</creatorcontrib><creatorcontrib>Catanese, Maria Teresa</creatorcontrib><creatorcontrib>Satoh, Takashi</creatorcontrib><creatorcontrib>Kawai, Taro</creatorcontrib><creatorcontrib>Akira, Shizuo</creatorcontrib><creatorcontrib>Law, Mansun</creatorcontrib><creatorcontrib>Rice, Charles M.</creatorcontrib><creatorcontrib>Ploss, Alexander</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorner, Marcus</au><au>Horwitz, Joshua A.</au><au>Donovan, Bridget M.</au><au>Labitt, Rachael N.</au><au>Budell, William C.</au><au>Friling, Tamar</au><au>Vogt, Alexander</au><au>Catanese, Maria Teresa</au><au>Satoh, Takashi</au><au>Kawai, Taro</au><au>Akira, Shizuo</au><au>Law, Mansun</au><au>Rice, Charles M.</au><au>Ploss, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Completion of the entire hepatitis C virus life cycle in genetically humanized mice</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-09-12</date><risdate>2013</risdate><volume>501</volume><issue>7466</issue><spage>237</spage><epage>241</epage><pages>237-241</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The entire hepatitis C virus life cycle can be recapitulated in an inbred mouse model, allowing preclinical assessment of antiviral therapeutics and vaccines. Humanized mouse model for hepatitis C infection In a 2009 Nature paper, Alexander Ploss and colleagues showed that transient expression of the human genes CD81 and occludin ( OCLN ) constituted a minimal set of cellular factors required for uptake of hepatitis C virus (HCV) into immune-competent mouse cells. Now they report that transgenic immune-deficient mice stably expressing CD81 and OCLN can sustain the complete HCV replication cycle with measurable viraemia. The availability of this genetically humanized mouse model opens the way to closer study of HCV infection in vivo and should provide a valuable platform for testing potential therapeutics. More than 130 million people worldwide chronically infected with hepatitis C virus (HCV) are at risk of developing severe liver disease. Antiviral treatments are only partially effective against HCV infection, and a vaccine is not available. Development of more efficient therapies has been hampered by the lack of a small animal model. Building on the observation that CD81 and occludin (OCLN) comprise the minimal set of human factors required to render mouse cells permissive to HCV entry 1 , we previously showed that transient expression of these two human genes is sufficient to allow viral uptake into fully immunocompetent inbred mice 2 . Here we demonstrate that transgenic mice stably expressing human CD81 and OCLN also support HCV entry, but innate and adaptive immune responses restrict HCV infection in vivo . Blunting antiviral immunity in genetically humanized mice infected with HCV results in measurable viraemia over several weeks. In mice lacking the essential cellular co-factor cyclophilin A (CypA), HCV RNA replication is markedly diminished, providing genetic evidence that this process is faithfully recapitulated. Using a cell-based fluorescent reporter activated by the NS3-4A protease we visualize HCV infection in single hepatocytes in vivo . Persistently infected mice produce de novo infectious particles, which can be inhibited with directly acting antiviral drug treatment, thereby providing evidence for the completion of the entire HCV life cycle in inbred mice. This genetically humanized mouse model opens new opportunities to dissect genetically HCV infection in vivo and provides an important preclinical platform for testing and prioritizing drug candidates and may also have utility for evaluating vaccine efficacy.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23903655</pmid><doi>10.1038/nature12427</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-09, Vol.501 (7466), p.237-241
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3858853
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/326/596/1905
Animal models
Animals
Cell Line
Cyclophilin A - genetics
Cyclophilin A - metabolism
Disease Models, Animal
DNA sequencing
Genetic aspects
Genetic Engineering
Genomes
Hepacivirus - immunology
Hepacivirus - physiology
Hepatitis
Hepatitis C - genetics
Hepatitis C - immunology
Hepatitis C - virology
Hepatitis C virus
Human factors
Humanities and Social Sciences
Humans
Immune system
Infections
letter
Life cycles
Methods
Mice
Mice, Inbred C57BL
Mice, Transgenic
multidisciplinary
Nucleotide sequencing
Occludin - genetics
Occludin - metabolism
Rodents
Science
STAT1 Transcription Factor - deficiency
Tetraspanin 28 - genetics
Tetraspanin 28 - metabolism
Vaccines
Viremia - virology
Virion - growth & development
Virion - physiology
Virus Replication
title Completion of the entire hepatitis C virus life cycle in genetically humanized mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Completion%20of%20the%20entire%20hepatitis%20C%20virus%20life%20cycle%20in%20genetically%20humanized%20mice&rft.jtitle=Nature%20(London)&rft.au=Dorner,%20Marcus&rft.date=2013-09-12&rft.volume=501&rft.issue=7466&rft.spage=237&rft.epage=241&rft.pages=237-241&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12427&rft_dat=%3Cgale_pubme%3EA342875893%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445365321&rft_id=info:pmid/23903655&rft_galeid=A342875893&rfr_iscdi=true