Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method
Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphologic...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-9 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2013 |
creator | Jin, Jiaoying Yang, Linjun Zhang, Xuming Ding, Mingyue |
description | Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images. |
doi_str_mv | 10.1155/2013/502013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3852584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469657575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-33cd8a55bd0ea7122b48b96fb6e4d4631a49d72f68d44223c23172a7fcaf5223</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4MotlZPnpUcRRmb38leBFusLWzx4CrewpvJm92U-VGTmRb_e7NMXfQkObyEfPi89_gS8pKz95xrfSoYl6ea7csjcsytcpWx3D0-3NmPI_Is5xvGNLeaPyVHQknlrHTH5OY75GbuINFNQqRfcdvjMMEUx4HGgV5jiA109KqHLWb6LcdhSy8x5whDdQYZA72euynmAiG9iN2EaY_AEOga77ArxqlYpt0YnpMnLXQZXzzUE7K5-LQ5v6zWXz5fnX9cV42SbqqkbIIDrevAECwXolauXpm2NqiCMpKDWgUrWuOCUkLIRkhuBdi2gVaX9wn5sGhv57rH0JR1EnT-NsUe0i8_QvT__gxx57fjnZdOC-1UEbx5EKTx54x58n3ZD7sOBhzn7LkyK6NtOQV9t6BNGnNO2B7acOb34fh9Kn4Jp9Cv_57swP5JowBvF2AXhwD38T-2VwuMBcEWDrCyxmgmfwO046FV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469657575</pqid></control><display><type>article</type><title>Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Jin, Jiaoying ; Yang, Linjun ; Zhang, Xuming ; Ding, Mingyue</creator><contributor>Niu, Tianye</contributor><creatorcontrib>Jin, Jiaoying ; Yang, Linjun ; Zhang, Xuming ; Ding, Mingyue ; Niu, Tianye</creatorcontrib><description>Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/502013</identifier><identifier>PMID: 24348738</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Humans ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Kidney - blood supply ; Kidney - pathology ; Liver - blood supply ; Liver - pathology ; Magnetic Resonance Angiography ; Normal Distribution ; Pattern Recognition, Automated - methods ; Software</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9</ispartof><rights>Copyright © 2013 Jiaoying Jin et al.</rights><rights>Copyright © 2013 Jiaoying Jin et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-33cd8a55bd0ea7122b48b96fb6e4d4631a49d72f68d44223c23172a7fcaf5223</citedby><cites>FETCH-LOGICAL-c438t-33cd8a55bd0ea7122b48b96fb6e4d4631a49d72f68d44223c23172a7fcaf5223</cites><orcidid>0000-0003-3933-1205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852584/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852584/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24348738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Niu, Tianye</contributor><creatorcontrib>Jin, Jiaoying</creatorcontrib><creatorcontrib>Yang, Linjun</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><title>Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images.</description><subject>Algorithms</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Kidney - blood supply</subject><subject>Kidney - pathology</subject><subject>Liver - blood supply</subject><subject>Liver - pathology</subject><subject>Magnetic Resonance Angiography</subject><subject>Normal Distribution</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Software</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4MotlZPnpUcRRmb38leBFusLWzx4CrewpvJm92U-VGTmRb_e7NMXfQkObyEfPi89_gS8pKz95xrfSoYl6ea7csjcsytcpWx3D0-3NmPI_Is5xvGNLeaPyVHQknlrHTH5OY75GbuINFNQqRfcdvjMMEUx4HGgV5jiA109KqHLWb6LcdhSy8x5whDdQYZA72euynmAiG9iN2EaY_AEOga77ArxqlYpt0YnpMnLXQZXzzUE7K5-LQ5v6zWXz5fnX9cV42SbqqkbIIDrevAECwXolauXpm2NqiCMpKDWgUrWuOCUkLIRkhuBdi2gVaX9wn5sGhv57rH0JR1EnT-NsUe0i8_QvT__gxx57fjnZdOC-1UEbx5EKTx54x58n3ZD7sOBhzn7LkyK6NtOQV9t6BNGnNO2B7acOb34fh9Kn4Jp9Cv_57swP5JowBvF2AXhwD38T-2VwuMBcEWDrCyxmgmfwO046FV</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Jin, Jiaoying</creator><creator>Yang, Linjun</creator><creator>Zhang, Xuming</creator><creator>Ding, Mingyue</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3933-1205</orcidid></search><sort><creationdate>20130101</creationdate><title>Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method</title><author>Jin, Jiaoying ; Yang, Linjun ; Zhang, Xuming ; Ding, Mingyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-33cd8a55bd0ea7122b48b96fb6e4d4631a49d72f68d44223c23172a7fcaf5223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Kidney - blood supply</topic><topic>Kidney - pathology</topic><topic>Liver - blood supply</topic><topic>Liver - pathology</topic><topic>Magnetic Resonance Angiography</topic><topic>Normal Distribution</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jiaoying</creatorcontrib><creatorcontrib>Yang, Linjun</creatorcontrib><creatorcontrib>Zhang, Xuming</creatorcontrib><creatorcontrib>Ding, Mingyue</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jiaoying</au><au>Yang, Linjun</au><au>Zhang, Xuming</au><au>Ding, Mingyue</au><au>Niu, Tianye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>Vascular segmentation plays an important role in medical image analysis. A novel technique for the automatic extraction of vascular trees from 2D medical images is presented, which combines Hessian-based multiscale filtering and a modified level set method. In the proposed algorithm, the morphological top-hat transformation is firstly adopted to attenuate background. Then Hessian-based multiscale filtering is used to enhance vascular structures by combining Hessian matrix with Gaussian convolution to tune the filtering response to the specific scales. Because Gaussian convolution tends to blur vessel boundaries, which makes scale selection inaccurate, an improved level set method is finally proposed to extract vascular structures by introducing an external constrained term related to the standard deviation of Gaussian function into the traditional level set. Our approach was tested on synthetic images with vascular-like structures and 2D slices extracted from real 3D abdomen magnetic resonance angiography (MRA) images along the coronal plane. The segmentation rates for synthetic images are above 95%. The results for MRA images demonstrate that the proposed method can extract most of the vascular structures successfully and accurately in visualization. Therefore, the proposed method is effective for the vascular tree extraction in medical images.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24348738</pmid><doi>10.1155/2013/502013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3933-1205</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-9 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3852584 |
source | MEDLINE; Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Algorithms Humans Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Kidney - blood supply Kidney - pathology Liver - blood supply Liver - pathology Magnetic Resonance Angiography Normal Distribution Pattern Recognition, Automated - methods Software |
title | Vascular Tree Segmentation in Medical Images Using Hessian-Based Multiscale Filtering and Level Set Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A48%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20Tree%20Segmentation%20in%20Medical%20Images%20Using%20Hessian-Based%20Multiscale%20Filtering%20and%20Level%20Set%20Method&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Jin,%20Jiaoying&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/502013&rft_dat=%3Cproquest_pubme%3E1469657575%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469657575&rft_id=info:pmid/24348738&rfr_iscdi=true |