Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements
Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resista...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2013-12, Vol.163 (4), p.1868-1882 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1882 |
---|---|
container_issue | 4 |
container_start_page | 1868 |
container_title | Plant physiology (Bethesda) |
container_volume | 163 |
creator | Xiao, Jun Cheng, Hongtao Li, Xianghua Xiao, Jinghua Xu, Caiguo Wang, Shiping |
description | Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure. |
doi_str_mv | 10.1104/pp.113.226019 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23598902</jstor_id><sourcerecordid>23598902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhyBHkCxKXFNuT7NoXpHYpH6ISaLcIcbIcZ7J18SbB9rbaO384jrK0cJonzU9v7PcIec7ZCeesfDMMecKJEHPG1QMy4xWIQlSlfEhmjGXNpFRH5EmM14wxDrx8TI5EySHjixn5vXIW6ffV5x8c6Ao3O28SRroMfYz00viftMZ0i9jR09r1yVlquoaeTXKdAmZs7Tad8a7b0K8mXd2afaT1nq7Ro03uBjPdNeM29fSda1sM2CVqXSzOPW6zjk_Jo9b4iM8O85h8e39-ufxYXHz58Gl5elHYCmQqJDJQsJgbrBowojbG2hpKsAwbJivFaq4Mr-ZW5X83olHQzkHw1rZlC4tyDsfk7eQ77OotNjbfDsbrIbitCXvdG6f_33TuSm_6Gw2yynHJbPD6YBD6XzuMSW9dtOi96bDfRS3GiIUSMKLFhNoxyoDt3RnO9NicHoY8QU_NZf7lv2-7o_9WlYFXB8BEa3wbTJczvOdkPr3gInMvJu46pj7c76FSUjEBfwCc_6v0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000129238</pqid></control><display><type>article</type><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</creator><creatorcontrib>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</creatorcontrib><description>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.226019</identifier><identifier>PMID: 24130197</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Antibodies ; Biological and medical sciences ; biotic stress ; complementary genes ; Dehydration ; disease resistance ; DNA ; DNA, Plant - metabolism ; Drought ; drought tolerance ; Droughts ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genetic mutation ; Green Fluorescent Proteins - metabolism ; guard cells ; Models, Biological ; Molecular Sequence Data ; Mutation - genetics ; Oryza - drug effects ; Oryza - genetics ; Oryza - microbiology ; Oryza - physiology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - cytology ; Plant Stomata - drug effects ; Plant Stomata - genetics ; Plant Vascular Bundle - drug effects ; Plant Vascular Bundle - genetics ; Plants, Genetically Modified ; Promoter regions ; Promoter Regions, Genetic ; Protein Binding - drug effects ; Regulatory Sequences, Nucleic Acid - genetics ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rice ; signal transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; SIGNALING AND RESPONSE ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; transcription (genetics) ; Transcription factors ; Transcription, Genetic - drug effects ; Transgenic plants ; Xanthomonas - drug effects ; Xanthomonas - physiology</subject><ispartof>Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1868-1882</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2013 American Society of Plant Biologists. All Rights Reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</citedby><cites>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23598902$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23598902$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28001712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Cheng, Hongtao</creatorcontrib><creatorcontrib>Li, Xianghua</creatorcontrib><creatorcontrib>Xiao, Jinghua</creatorcontrib><creatorcontrib>Xu, Caiguo</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</description><subject>Antibodies</subject><subject>Biological and medical sciences</subject><subject>biotic stress</subject><subject>complementary genes</subject><subject>Dehydration</subject><subject>disease resistance</subject><subject>DNA</subject><subject>DNA, Plant - metabolism</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>guard cells</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza - microbiology</subject><subject>Oryza - physiology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - cytology</subject><subject>Plant Stomata - drug effects</subject><subject>Plant Stomata - genetics</subject><subject>Plant Vascular Bundle - drug effects</subject><subject>Plant Vascular Bundle - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding - drug effects</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rice</subject><subject>signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>SIGNALING AND RESPONSE</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transgenic plants</subject><subject>Xanthomonas - drug effects</subject><subject>Xanthomonas - physiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhyBHkCxKXFNuT7NoXpHYpH6ISaLcIcbIcZ7J18SbB9rbaO384jrK0cJonzU9v7PcIec7ZCeesfDMMecKJEHPG1QMy4xWIQlSlfEhmjGXNpFRH5EmM14wxDrx8TI5EySHjixn5vXIW6ffV5x8c6Ao3O28SRroMfYz00viftMZ0i9jR09r1yVlquoaeTXKdAmZs7Tad8a7b0K8mXd2afaT1nq7Ro03uBjPdNeM29fSda1sM2CVqXSzOPW6zjk_Jo9b4iM8O85h8e39-ufxYXHz58Gl5elHYCmQqJDJQsJgbrBowojbG2hpKsAwbJivFaq4Mr-ZW5X83olHQzkHw1rZlC4tyDsfk7eQ77OotNjbfDsbrIbitCXvdG6f_33TuSm_6Gw2yynHJbPD6YBD6XzuMSW9dtOi96bDfRS3GiIUSMKLFhNoxyoDt3RnO9NicHoY8QU_NZf7lv2-7o_9WlYFXB8BEa3wbTJczvOdkPr3gInMvJu46pj7c76FSUjEBfwCc_6v0</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xiao, Jun</creator><creator>Cheng, Hongtao</creator><creator>Li, Xianghua</creator><creator>Xiao, Jinghua</creator><creator>Xu, Caiguo</creator><creator>Wang, Shiping</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><author>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antibodies</topic><topic>Biological and medical sciences</topic><topic>biotic stress</topic><topic>complementary genes</topic><topic>Dehydration</topic><topic>disease resistance</topic><topic>DNA</topic><topic>DNA, Plant - metabolism</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>guard cells</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza - microbiology</topic><topic>Oryza - physiology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - cytology</topic><topic>Plant Stomata - drug effects</topic><topic>Plant Stomata - genetics</topic><topic>Plant Vascular Bundle - drug effects</topic><topic>Plant Vascular Bundle - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding - drug effects</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rice</topic><topic>signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>SIGNALING AND RESPONSE</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transgenic plants</topic><topic>Xanthomonas - drug effects</topic><topic>Xanthomonas - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Cheng, Hongtao</creatorcontrib><creatorcontrib>Li, Xianghua</creatorcontrib><creatorcontrib>Xiao, Jinghua</creatorcontrib><creatorcontrib>Xu, Caiguo</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jun</au><au>Cheng, Hongtao</au><au>Li, Xianghua</au><au>Xiao, Jinghua</au><au>Xu, Caiguo</au><au>Wang, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>163</volume><issue>4</issue><spage>1868</spage><epage>1882</epage><pages>1868-1882</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>24130197</pmid><doi>10.1104/pp.113.226019</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1868-1882 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850198 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current) |
subjects | Antibodies Biological and medical sciences biotic stress complementary genes Dehydration disease resistance DNA DNA, Plant - metabolism Drought drought tolerance Droughts Fundamental and applied biological sciences. Psychology Gene expression Gene expression regulation Gene Expression Regulation, Plant - drug effects Genes Genetic mutation Green Fluorescent Proteins - metabolism guard cells Models, Biological Molecular Sequence Data Mutation - genetics Oryza - drug effects Oryza - genetics Oryza - microbiology Oryza - physiology Plant Diseases - genetics Plant Diseases - microbiology Plant physiology and development Plant Proteins - genetics Plant Proteins - metabolism Plant Stomata - cytology Plant Stomata - drug effects Plant Stomata - genetics Plant Vascular Bundle - drug effects Plant Vascular Bundle - genetics Plants, Genetically Modified Promoter regions Promoter Regions, Genetic Protein Binding - drug effects Regulatory Sequences, Nucleic Acid - genetics Repressor Proteins - genetics Repressor Proteins - metabolism Rice signal transduction Signal Transduction - drug effects Signal Transduction - genetics SIGNALING AND RESPONSE Sodium Chloride - pharmacology Stress, Physiological - drug effects Stress, Physiological - genetics transcription (genetics) Transcription factors Transcription, Genetic - drug effects Transgenic plants Xanthomonas - drug effects Xanthomonas - physiology |
title | Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20WRKY13%20Regulates%20Cross%20Talk%20between%20Abiotic%20and%20Biotic%20Stress%20Signaling%20Pathways%20by%20Selective%20Binding%20to%20Different%20cis-Elements&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Xiao,%20Jun&rft.date=2013-12-01&rft.volume=163&rft.issue=4&rft.spage=1868&rft.epage=1882&rft.pages=1868-1882&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.113.226019&rft_dat=%3Cjstor_pubme%3E23598902%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000129238&rft_id=info:pmid/24130197&rft_jstor_id=23598902&rfr_iscdi=true |