Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements

Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resista...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2013-12, Vol.163 (4), p.1868-1882
Hauptverfasser: Xiao, Jun, Cheng, Hongtao, Li, Xianghua, Xiao, Jinghua, Xu, Caiguo, Wang, Shiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1882
container_issue 4
container_start_page 1868
container_title Plant physiology (Bethesda)
container_volume 163
creator Xiao, Jun
Cheng, Hongtao
Li, Xianghua
Xiao, Jinghua
Xu, Caiguo
Wang, Shiping
description Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.
doi_str_mv 10.1104/pp.113.226019
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23598902</jstor_id><sourcerecordid>23598902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</originalsourceid><addsrcrecordid>eNpVkc1v1DAQxS0EokvhyBHkCxKXFNuT7NoXpHYpH6ISaLcIcbIcZ7J18SbB9rbaO384jrK0cJonzU9v7PcIec7ZCeesfDMMecKJEHPG1QMy4xWIQlSlfEhmjGXNpFRH5EmM14wxDrx8TI5EySHjixn5vXIW6ffV5x8c6Ao3O28SRroMfYz00viftMZ0i9jR09r1yVlquoaeTXKdAmZs7Tad8a7b0K8mXd2afaT1nq7Ro03uBjPdNeM29fSda1sM2CVqXSzOPW6zjk_Jo9b4iM8O85h8e39-ufxYXHz58Gl5elHYCmQqJDJQsJgbrBowojbG2hpKsAwbJivFaq4Mr-ZW5X83olHQzkHw1rZlC4tyDsfk7eQ77OotNjbfDsbrIbitCXvdG6f_33TuSm_6Gw2yynHJbPD6YBD6XzuMSW9dtOi96bDfRS3GiIUSMKLFhNoxyoDt3RnO9NicHoY8QU_NZf7lv2-7o_9WlYFXB8BEa3wbTJczvOdkPr3gInMvJu46pj7c76FSUjEBfwCc_6v0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000129238</pqid></control><display><type>article</type><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</creator><creatorcontrib>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</creatorcontrib><description>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.226019</identifier><identifier>PMID: 24130197</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Antibodies ; Biological and medical sciences ; biotic stress ; complementary genes ; Dehydration ; disease resistance ; DNA ; DNA, Plant - metabolism ; Drought ; drought tolerance ; Droughts ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene expression regulation ; Gene Expression Regulation, Plant - drug effects ; Genes ; Genetic mutation ; Green Fluorescent Proteins - metabolism ; guard cells ; Models, Biological ; Molecular Sequence Data ; Mutation - genetics ; Oryza - drug effects ; Oryza - genetics ; Oryza - microbiology ; Oryza - physiology ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant physiology and development ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Stomata - cytology ; Plant Stomata - drug effects ; Plant Stomata - genetics ; Plant Vascular Bundle - drug effects ; Plant Vascular Bundle - genetics ; Plants, Genetically Modified ; Promoter regions ; Promoter Regions, Genetic ; Protein Binding - drug effects ; Regulatory Sequences, Nucleic Acid - genetics ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Rice ; signal transduction ; Signal Transduction - drug effects ; Signal Transduction - genetics ; SIGNALING AND RESPONSE ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; transcription (genetics) ; Transcription factors ; Transcription, Genetic - drug effects ; Transgenic plants ; Xanthomonas - drug effects ; Xanthomonas - physiology</subject><ispartof>Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1868-1882</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2013 American Society of Plant Biologists. All Rights Reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</citedby><cites>FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23598902$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23598902$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28001712$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Cheng, Hongtao</creatorcontrib><creatorcontrib>Li, Xianghua</creatorcontrib><creatorcontrib>Xiao, Jinghua</creatorcontrib><creatorcontrib>Xu, Caiguo</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</description><subject>Antibodies</subject><subject>Biological and medical sciences</subject><subject>biotic stress</subject><subject>complementary genes</subject><subject>Dehydration</subject><subject>disease resistance</subject><subject>DNA</subject><subject>DNA, Plant - metabolism</subject><subject>Drought</subject><subject>drought tolerance</subject><subject>Droughts</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>guard cells</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Oryza - drug effects</subject><subject>Oryza - genetics</subject><subject>Oryza - microbiology</subject><subject>Oryza - physiology</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant physiology and development</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Stomata - cytology</subject><subject>Plant Stomata - drug effects</subject><subject>Plant Stomata - genetics</subject><subject>Plant Vascular Bundle - drug effects</subject><subject>Plant Vascular Bundle - genetics</subject><subject>Plants, Genetically Modified</subject><subject>Promoter regions</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Binding - drug effects</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Rice</subject><subject>signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - genetics</subject><subject>SIGNALING AND RESPONSE</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription factors</subject><subject>Transcription, Genetic - drug effects</subject><subject>Transgenic plants</subject><subject>Xanthomonas - drug effects</subject><subject>Xanthomonas - physiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1v1DAQxS0EokvhyBHkCxKXFNuT7NoXpHYpH6ISaLcIcbIcZ7J18SbB9rbaO384jrK0cJonzU9v7PcIec7ZCeesfDMMecKJEHPG1QMy4xWIQlSlfEhmjGXNpFRH5EmM14wxDrx8TI5EySHjixn5vXIW6ffV5x8c6Ao3O28SRroMfYz00viftMZ0i9jR09r1yVlquoaeTXKdAmZs7Tad8a7b0K8mXd2afaT1nq7Ro03uBjPdNeM29fSda1sM2CVqXSzOPW6zjk_Jo9b4iM8O85h8e39-ufxYXHz58Gl5elHYCmQqJDJQsJgbrBowojbG2hpKsAwbJivFaq4Mr-ZW5X83olHQzkHw1rZlC4tyDsfk7eQ77OotNjbfDsbrIbitCXvdG6f_33TuSm_6Gw2yynHJbPD6YBD6XzuMSW9dtOi96bDfRS3GiIUSMKLFhNoxyoDt3RnO9NicHoY8QU_NZf7lv2-7o_9WlYFXB8BEa3wbTJczvOdkPr3gInMvJu46pj7c76FSUjEBfwCc_6v0</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Xiao, Jun</creator><creator>Cheng, Hongtao</creator><creator>Li, Xianghua</creator><creator>Xiao, Jinghua</creator><creator>Xu, Caiguo</creator><creator>Wang, Shiping</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</title><author>Xiao, Jun ; Cheng, Hongtao ; Li, Xianghua ; Xiao, Jinghua ; Xu, Caiguo ; Wang, Shiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-8e039376ae5d3a2baaccb343c0ed08590b19a156c9032d2d93f6321fcf4f37463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antibodies</topic><topic>Biological and medical sciences</topic><topic>biotic stress</topic><topic>complementary genes</topic><topic>Dehydration</topic><topic>disease resistance</topic><topic>DNA</topic><topic>DNA, Plant - metabolism</topic><topic>Drought</topic><topic>drought tolerance</topic><topic>Droughts</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>guard cells</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Oryza - drug effects</topic><topic>Oryza - genetics</topic><topic>Oryza - microbiology</topic><topic>Oryza - physiology</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant physiology and development</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Stomata - cytology</topic><topic>Plant Stomata - drug effects</topic><topic>Plant Stomata - genetics</topic><topic>Plant Vascular Bundle - drug effects</topic><topic>Plant Vascular Bundle - genetics</topic><topic>Plants, Genetically Modified</topic><topic>Promoter regions</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Binding - drug effects</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Rice</topic><topic>signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - genetics</topic><topic>SIGNALING AND RESPONSE</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription factors</topic><topic>Transcription, Genetic - drug effects</topic><topic>Transgenic plants</topic><topic>Xanthomonas - drug effects</topic><topic>Xanthomonas - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jun</creatorcontrib><creatorcontrib>Cheng, Hongtao</creatorcontrib><creatorcontrib>Li, Xianghua</creatorcontrib><creatorcontrib>Xiao, Jinghua</creatorcontrib><creatorcontrib>Xu, Caiguo</creatorcontrib><creatorcontrib>Wang, Shiping</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jun</au><au>Cheng, Hongtao</au><au>Li, Xianghua</au><au>Xiao, Jinghua</au><au>Xu, Caiguo</au><au>Wang, Shiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>163</volume><issue>4</issue><spage>1868</spage><epage>1882</epage><pages>1868-1882</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>24130197</pmid><doi>10.1104/pp.113.226019</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1868-1882
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850198
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current)
subjects Antibodies
Biological and medical sciences
biotic stress
complementary genes
Dehydration
disease resistance
DNA
DNA, Plant - metabolism
Drought
drought tolerance
Droughts
Fundamental and applied biological sciences. Psychology
Gene expression
Gene expression regulation
Gene Expression Regulation, Plant - drug effects
Genes
Genetic mutation
Green Fluorescent Proteins - metabolism
guard cells
Models, Biological
Molecular Sequence Data
Mutation - genetics
Oryza - drug effects
Oryza - genetics
Oryza - microbiology
Oryza - physiology
Plant Diseases - genetics
Plant Diseases - microbiology
Plant physiology and development
Plant Proteins - genetics
Plant Proteins - metabolism
Plant Stomata - cytology
Plant Stomata - drug effects
Plant Stomata - genetics
Plant Vascular Bundle - drug effects
Plant Vascular Bundle - genetics
Plants, Genetically Modified
Promoter regions
Promoter Regions, Genetic
Protein Binding - drug effects
Regulatory Sequences, Nucleic Acid - genetics
Repressor Proteins - genetics
Repressor Proteins - metabolism
Rice
signal transduction
Signal Transduction - drug effects
Signal Transduction - genetics
SIGNALING AND RESPONSE
Sodium Chloride - pharmacology
Stress, Physiological - drug effects
Stress, Physiological - genetics
transcription (genetics)
Transcription factors
Transcription, Genetic - drug effects
Transgenic plants
Xanthomonas - drug effects
Xanthomonas - physiology
title Rice WRKY13 Regulates Cross Talk between Abiotic and Biotic Stress Signaling Pathways by Selective Binding to Different cis-Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rice%20WRKY13%20Regulates%20Cross%20Talk%20between%20Abiotic%20and%20Biotic%20Stress%20Signaling%20Pathways%20by%20Selective%20Binding%20to%20Different%20cis-Elements&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Xiao,%20Jun&rft.date=2013-12-01&rft.volume=163&rft.issue=4&rft.spage=1868&rft.epage=1882&rft.pages=1868-1882&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.113.226019&rft_dat=%3Cjstor_pubme%3E23598902%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000129238&rft_id=info:pmid/24130197&rft_jstor_id=23598902&rfr_iscdi=true