Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem

Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-12, Vol.33 (49), p.19212-19222
Hauptverfasser: Walz, Jennifer M, Goldman, Robin I, Carapezza, Michael, Muraskin, Jordan, Brown, Truman R, Sajda, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19222
container_issue 49
container_start_page 19212
container_title The Journal of neuroscience
container_volume 33
creator Walz, Jennifer M
Goldman, Robin I
Carapezza, Michael
Muraskin, Jordan
Brown, Truman R
Sajda, Paul
description Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.
doi_str_mv 10.1523/JNEUROSCI.2649-13.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1551620714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-86c12dde3e9b720620b8f0f4fca42b2edb212cb85a350870408f03cc811154ed3</originalsourceid><addsrcrecordid>eNqFUU1v1DAQtRCILoW_UPnIJcv4K8lekNBq2y4qVGrp2XKcSRtI7GA7izj0v-NlywpOnMbS-5g3foScMVgyxcW7j583dzfXt-vtkpdyVTCx5MDEM7LI6KrgEthzsgBeQVHKSp6QVzF-BYAKWPWSnHApQNWsWpDH236ch2Qc-jnSzeai6D7dbGnAHZoh0oTj5IMZKO78MKfeO-o7av08Db27pw2mH4iOxnkKZvRtJlofUm_zw6SE7rfCZZYP3yI1rqXpAWkTTO9i9n5NXnR5Db55mqfk7nzzZX1ZXF1fbNcfrgqrmEhFXVrG2xYFrpqKQ8mhqTvoZGeN5A3HtuGM26ZWRiioK5CQYWFtzRhTEltxSt4ffKe5GbG1OVg-Sk-hH034qb3p9b-I6x_0vd9pUSsAybPB2yeD4L_PGJMe-2hxGA4fp5lSLMeqmPw_VZaqLqEuVaaWB6oNPsaA3TERA72vWR9r1vuaNRN6X3MWnv19z1H2p1fxC2mtqAg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465860865</pqid></control><display><type>article</type><title>Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Walz, Jennifer M ; Goldman, Robin I ; Carapezza, Michael ; Muraskin, Jordan ; Brown, Truman R ; Sajda, Paul</creator><creatorcontrib>Walz, Jennifer M ; Goldman, Robin I ; Carapezza, Michael ; Muraskin, Jordan ; Brown, Truman R ; Sajda, Paul</creatorcontrib><description>Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2649-13.2013</identifier><identifier>PMID: 24305817</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Acoustic Stimulation ; Adult ; Algorithms ; Attention - physiology ; Brain Stem - physiology ; Cerebral Cortex - physiology ; Electroencephalography - methods ; Event-Related Potentials, P300 - physiology ; Female ; Humans ; Image Processing, Computer-Assisted ; Linear Models ; Magnetic Resonance Imaging - methods ; Male ; Nerve Net - physiology ; Oxygen - blood ; Photic Stimulation ; Reaction Time - physiology ; Young Adult</subject><ispartof>The Journal of neuroscience, 2013-12, Vol.33 (49), p.19212-19222</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3319212-11$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-86c12dde3e9b720620b8f0f4fca42b2edb212cb85a350870408f03cc811154ed3</citedby><cites>FETCH-LOGICAL-c513t-86c12dde3e9b720620b8f0f4fca42b2edb212cb85a350870408f03cc811154ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850042/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3850042/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24305817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walz, Jennifer M</creatorcontrib><creatorcontrib>Goldman, Robin I</creatorcontrib><creatorcontrib>Carapezza, Michael</creatorcontrib><creatorcontrib>Muraskin, Jordan</creatorcontrib><creatorcontrib>Brown, Truman R</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><title>Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.</description><subject>Acoustic Stimulation</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Attention - physiology</subject><subject>Brain Stem - physiology</subject><subject>Cerebral Cortex - physiology</subject><subject>Electroencephalography - methods</subject><subject>Event-Related Potentials, P300 - physiology</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Linear Models</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Oxygen - blood</subject><subject>Photic Stimulation</subject><subject>Reaction Time - physiology</subject><subject>Young Adult</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAQtRCILoW_UPnIJcv4K8lekNBq2y4qVGrp2XKcSRtI7GA7izj0v-NlywpOnMbS-5g3foScMVgyxcW7j583dzfXt-vtkpdyVTCx5MDEM7LI6KrgEthzsgBeQVHKSp6QVzF-BYAKWPWSnHApQNWsWpDH236ch2Qc-jnSzeai6D7dbGnAHZoh0oTj5IMZKO78MKfeO-o7av08Db27pw2mH4iOxnkKZvRtJlofUm_zw6SE7rfCZZYP3yI1rqXpAWkTTO9i9n5NXnR5Db55mqfk7nzzZX1ZXF1fbNcfrgqrmEhFXVrG2xYFrpqKQ8mhqTvoZGeN5A3HtuGM26ZWRiioK5CQYWFtzRhTEltxSt4ffKe5GbG1OVg-Sk-hH034qb3p9b-I6x_0vd9pUSsAybPB2yeD4L_PGJMe-2hxGA4fp5lSLMeqmPw_VZaqLqEuVaaWB6oNPsaA3TERA72vWR9r1vuaNRN6X3MWnv19z1H2p1fxC2mtqAg</recordid><startdate>20131204</startdate><enddate>20131204</enddate><creator>Walz, Jennifer M</creator><creator>Goldman, Robin I</creator><creator>Carapezza, Michael</creator><creator>Muraskin, Jordan</creator><creator>Brown, Truman R</creator><creator>Sajda, Paul</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131204</creationdate><title>Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem</title><author>Walz, Jennifer M ; Goldman, Robin I ; Carapezza, Michael ; Muraskin, Jordan ; Brown, Truman R ; Sajda, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-86c12dde3e9b720620b8f0f4fca42b2edb212cb85a350870408f03cc811154ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustic Stimulation</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Attention - physiology</topic><topic>Brain Stem - physiology</topic><topic>Cerebral Cortex - physiology</topic><topic>Electroencephalography - methods</topic><topic>Event-Related Potentials, P300 - physiology</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Linear Models</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Oxygen - blood</topic><topic>Photic Stimulation</topic><topic>Reaction Time - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walz, Jennifer M</creatorcontrib><creatorcontrib>Goldman, Robin I</creatorcontrib><creatorcontrib>Carapezza, Michael</creatorcontrib><creatorcontrib>Muraskin, Jordan</creatorcontrib><creatorcontrib>Brown, Truman R</creatorcontrib><creatorcontrib>Sajda, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walz, Jennifer M</au><au>Goldman, Robin I</au><au>Carapezza, Michael</au><au>Muraskin, Jordan</au><au>Brown, Truman R</au><au>Sajda, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-12-04</date><risdate>2013</risdate><volume>33</volume><issue>49</issue><spage>19212</spage><epage>19222</epage><pages>19212-19222</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>Cortical and subcortical networks have been identified that are commonly associated with attention and task engagement, along with theories regarding their functional interaction. However, a link between these systems has not yet been demonstrated in healthy humans, primarily because of data acquisition and analysis limitations. We recorded simultaneous EEG-fMRI while subjects performed auditory and visual oddball tasks and used these data to investigate the BOLD correlates of single-trial EEG variability at latencies spanning the trial. We focused on variability along task-relevant dimensions in the EEG for identical stimuli and then combined auditory and visual data at the subject level to spatially and temporally localize brain regions involved in endogenous attentional modulations. Specifically, we found that anterior cingulate cortex (ACC) correlates strongly with both early and late EEG components, whereas brainstem, right middle frontal gyrus (rMFG), and right orbitofrontal cortex (rOFC) correlate significantly only with late components. By orthogonalizing with respect to event-related activity, we found that variability in insula and temporoparietal junction is reflected in reaction time variability, rOFC and brainstem correlate with residual EEG variability, and ACC and rMFG are significantly correlated with both. To investigate interactions between these correlates of temporally specific EEG variability, we performed dynamic causal modeling (DCM) on the fMRI data. We found strong evidence for reciprocal effective connections between the brainstem and cortical regions. Our results support the adaptive gain theory of locus ceruleus-norepinephrine (LC-NE) function and the proposed functional relationship between the LC-NE system, right-hemisphere ventral attention network, and P300 EEG response.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24305817</pmid><doi>10.1523/JNEUROSCI.2649-13.2013</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-12, Vol.33 (49), p.19212-19222
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3850042
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Acoustic Stimulation
Adult
Algorithms
Attention - physiology
Brain Stem - physiology
Cerebral Cortex - physiology
Electroencephalography - methods
Event-Related Potentials, P300 - physiology
Female
Humans
Image Processing, Computer-Assisted
Linear Models
Magnetic Resonance Imaging - methods
Male
Nerve Net - physiology
Oxygen - blood
Photic Stimulation
Reaction Time - physiology
Young Adult
title Simultaneous EEG-fMRI reveals temporal evolution of coupling between supramodal cortical attention networks and the brainstem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20EEG-fMRI%20reveals%20temporal%20evolution%20of%20coupling%20between%20supramodal%20cortical%20attention%20networks%20and%20the%20brainstem&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Walz,%20Jennifer%20M&rft.date=2013-12-04&rft.volume=33&rft.issue=49&rft.spage=19212&rft.epage=19222&rft.pages=19212-19222&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2649-13.2013&rft_dat=%3Cproquest_pubme%3E1551620714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465860865&rft_id=info:pmid/24305817&rfr_iscdi=true