Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers
As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting ev...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2014-01, Vol.85 (1), p.192-201 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201 |
---|---|
container_issue | 1 |
container_start_page | 192 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 85 |
creator | Yücel, Meryem A. Selb, Juliette Boas, David A. Cash, Sydney S. Cooper, Robert J. |
description | As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case.
•The use of miniaturized fiber tips fixed to the scalp using collodion reduces motion artifact.•Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90%.•The new method increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively. |
doi_str_mv | 10.1016/j.neuroimage.2013.06.054 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3849205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811913006915</els_id><sourcerecordid>1520388902</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-8b015fc80ab064e1be98df7e919344ee522f80b889e82c27da2133ca93c7c7f03</originalsourceid><addsrcrecordid>eNqFkktv1DAUhS0EomXgL6BIbNgk-B17gwQVj0oVSAXWluNcDx4l9tROqvLv8TClPDbd2Jb8nXOvrw9CDcEdwUS-2nUR1pzCbLfQUUxYh2WHBX-ATgnWotWipw8PZ8FaRYg-QU9K2WGMNeHqMTqhrNdScHmKri5hXF2I22ZOS0ixsXkJ3rqlND7lZkpx2y6Q58ZNIQZnp-bT-eWXCsewpHzQreWwujRNaawGrQ83MDb7HMrcDrbUc9ovv5Q-DJDLU_TI26nAs9t9g769f_f17GN78fnD-dmbi9YJLZZWDZgI7xS2A5YcyABajb4HTTTjHEBQ6hUelNKgqKP9aClhzFnNXO96j9kGvT767tdhhtFBXLKdTG1stvmHSTaYf29i-G626dowxTWtk9ugl7cGOV2tUBYzh-JgmmyEtBZDBMWs1sf0fpTLHkslOanoi__QXVpzrJOohoL0jAvJKqWOlMuplAz-rm-CzSECZmf-RMAcImCwNDUCVfr873ffCX__eQXeHgGo078OkE1xAaKDMWRwixlTuL_KT7fpydk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551734563</pqid></control><display><type>article</type><title>Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>ProQuest Central UK/Ireland</source><creator>Yücel, Meryem A. ; Selb, Juliette ; Boas, David A. ; Cash, Sydney S. ; Cooper, Robert J.</creator><creatorcontrib>Yücel, Meryem A. ; Selb, Juliette ; Boas, David A. ; Cash, Sydney S. ; Cooper, Robert J.</creatorcontrib><description>As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case.
•The use of miniaturized fiber tips fixed to the scalp using collodion reduces motion artifact.•Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90%.•The new method increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2013.06.054</identifier><identifier>PMID: 23796546</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Algorithms ; Brain research ; Collodion ; Digital broadcasting ; Electroencephalography ; Epilepsy ; Epilepsy - pathology ; Female ; Fiber Optic Technology - methods ; Functional Neuroimaging - methods ; Hemoglobins - analysis ; Humans ; Inpatients ; Male ; Methods ; Middle Aged ; Motion ; Motion artifact ; Near-infra red spectroscopy ; Optical Fibers ; Oxygen - blood ; Principal components analysis ; Seizures - pathology ; Spectroscopy, Near-Infrared - methods ; Wavelet Analysis ; Wavelet transforms</subject><ispartof>NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.192-201</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2014</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-8b015fc80ab064e1be98df7e919344ee522f80b889e82c27da2133ca93c7c7f03</citedby><cites>FETCH-LOGICAL-c595t-8b015fc80ab064e1be98df7e919344ee522f80b889e82c27da2133ca93c7c7f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1551734563?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27907,27908,45978,64366,64368,64370,72220</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23796546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yücel, Meryem A.</creatorcontrib><creatorcontrib>Selb, Juliette</creatorcontrib><creatorcontrib>Boas, David A.</creatorcontrib><creatorcontrib>Cash, Sydney S.</creatorcontrib><creatorcontrib>Cooper, Robert J.</creatorcontrib><title>Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case.
•The use of miniaturized fiber tips fixed to the scalp using collodion reduces motion artifact.•Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90%.•The new method increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Brain research</subject><subject>Collodion</subject><subject>Digital broadcasting</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy - pathology</subject><subject>Female</subject><subject>Fiber Optic Technology - methods</subject><subject>Functional Neuroimaging - methods</subject><subject>Hemoglobins - analysis</subject><subject>Humans</subject><subject>Inpatients</subject><subject>Male</subject><subject>Methods</subject><subject>Middle Aged</subject><subject>Motion</subject><subject>Motion artifact</subject><subject>Near-infra red spectroscopy</subject><subject>Optical Fibers</subject><subject>Oxygen - blood</subject><subject>Principal components analysis</subject><subject>Seizures - pathology</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Wavelet Analysis</subject><subject>Wavelet transforms</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkktv1DAUhS0EomXgL6BIbNgk-B17gwQVj0oVSAXWluNcDx4l9tROqvLv8TClPDbd2Jb8nXOvrw9CDcEdwUS-2nUR1pzCbLfQUUxYh2WHBX-ATgnWotWipw8PZ8FaRYg-QU9K2WGMNeHqMTqhrNdScHmKri5hXF2I22ZOS0ixsXkJ3rqlND7lZkpx2y6Q58ZNIQZnp-bT-eWXCsewpHzQreWwujRNaawGrQ83MDb7HMrcDrbUc9ovv5Q-DJDLU_TI26nAs9t9g769f_f17GN78fnD-dmbi9YJLZZWDZgI7xS2A5YcyABajb4HTTTjHEBQ6hUelNKgqKP9aClhzFnNXO96j9kGvT767tdhhtFBXLKdTG1stvmHSTaYf29i-G626dowxTWtk9ugl7cGOV2tUBYzh-JgmmyEtBZDBMWs1sf0fpTLHkslOanoi__QXVpzrJOohoL0jAvJKqWOlMuplAz-rm-CzSECZmf-RMAcImCwNDUCVfr873ffCX__eQXeHgGo078OkE1xAaKDMWRwixlTuL_KT7fpydk</recordid><startdate>20140115</startdate><enddate>20140115</enddate><creator>Yücel, Meryem A.</creator><creator>Selb, Juliette</creator><creator>Boas, David A.</creator><creator>Cash, Sydney S.</creator><creator>Cooper, Robert J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20140115</creationdate><title>Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers</title><author>Yücel, Meryem A. ; Selb, Juliette ; Boas, David A. ; Cash, Sydney S. ; Cooper, Robert J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-8b015fc80ab064e1be98df7e919344ee522f80b889e82c27da2133ca93c7c7f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Brain research</topic><topic>Collodion</topic><topic>Digital broadcasting</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy - pathology</topic><topic>Female</topic><topic>Fiber Optic Technology - methods</topic><topic>Functional Neuroimaging - methods</topic><topic>Hemoglobins - analysis</topic><topic>Humans</topic><topic>Inpatients</topic><topic>Male</topic><topic>Methods</topic><topic>Middle Aged</topic><topic>Motion</topic><topic>Motion artifact</topic><topic>Near-infra red spectroscopy</topic><topic>Optical Fibers</topic><topic>Oxygen - blood</topic><topic>Principal components analysis</topic><topic>Seizures - pathology</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Wavelet Analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yücel, Meryem A.</creatorcontrib><creatorcontrib>Selb, Juliette</creatorcontrib><creatorcontrib>Boas, David A.</creatorcontrib><creatorcontrib>Cash, Sydney S.</creatorcontrib><creatorcontrib>Cooper, Robert J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yücel, Meryem A.</au><au>Selb, Juliette</au><au>Boas, David A.</au><au>Cash, Sydney S.</au><au>Cooper, Robert J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2014-01-15</date><risdate>2014</risdate><volume>85</volume><issue>1</issue><spage>192</spage><epage>201</epage><pages>192-201</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>As the applications of near-infrared spectroscopy (NIRS) continue to broaden and long-term clinical monitoring becomes more common, minimizing signal artifacts due to patient movement becomes more pressing. This is particularly true in applications where clinically and physiologically interesting events are intrinsically linked to patient movement, as is the case in the study of epileptic seizures. In this study, we apply an approach common in the application of EEG electrodes to the application of specialized NIRS optical fibers. The method provides improved optode-scalp coupling through the use of miniaturized optical fiber tips fixed to the scalp using collodion, a clinical adhesive. We investigate and quantify the performance of this new method in minimizing motion artifacts in healthy subjects, and apply the technique to allow continuous NIRS monitoring throughout epileptic seizures in two epileptic in-patients. Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90% and increases the SNR by 6 and 3 fold at 690 and 830nm wavelengths respectively when compared to a standard Velcro-based array of optical fibers. The SNR has also increased by 2 fold during rest conditions without motion with the new probe design because of better light coupling between the fiber and scalp. The change in both HbO and HbR during motion artifacts is found to be statistically lower for the collodion-fixed fiber probe. The collodion-fixed optical fiber approach has also allowed us to obtain good quality NIRS recording of three epileptic seizures in two patients despite excessive motion in each case.
•The use of miniaturized fiber tips fixed to the scalp using collodion reduces motion artifact.•Using collodion-fixed fibers reduces the percent signal change of motion artifacts by 90%.•The new method increases the SNR by 6 and 3 fold at 690 and 830 nm wavelengths respectively.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23796546</pmid><doi>10.1016/j.neuroimage.2013.06.054</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2014-01, Vol.85 (1), p.192-201 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3849205 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; ProQuest Central UK/Ireland |
subjects | Adult Algorithms Brain research Collodion Digital broadcasting Electroencephalography Epilepsy Epilepsy - pathology Female Fiber Optic Technology - methods Functional Neuroimaging - methods Hemoglobins - analysis Humans Inpatients Male Methods Middle Aged Motion Motion artifact Near-infra red spectroscopy Optical Fibers Oxygen - blood Principal components analysis Seizures - pathology Spectroscopy, Near-Infrared - methods Wavelet Analysis Wavelet transforms |
title | Reducing motion artifacts for long-term clinical NIRS monitoring using collodion-fixed prism-based optical fibers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20motion%20artifacts%20for%20long-term%20clinical%20NIRS%20monitoring%20using%20collodion-fixed%20prism-based%20optical%20fibers&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Y%C3%BCcel,%20Meryem%20A.&rft.date=2014-01-15&rft.volume=85&rft.issue=1&rft.spage=192&rft.epage=201&rft.pages=192-201&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2013.06.054&rft_dat=%3Cproquest_pubme%3E1520388902%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551734563&rft_id=info:pmid/23796546&rft_els_id=S1053811913006915&rfr_iscdi=true |