Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometri...
Gespeichert in:
Veröffentlicht in: | Journal of Visualized Experiments 2013-07 (77), p.50633-50633 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 50633 |
---|---|
container_issue | 77 |
container_start_page | 50633 |
container_title | Journal of Visualized Experiments |
container_volume | |
creator | Vevea, Jason D. Alessi Wolken, Dana M. Swayne, Theresa C. White, Adam B. Pon, Liza A. |
description | Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor. |
doi_str_mv | 10.3791/50633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_223</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3846110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1418145034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-dfc7a941a033d9311915ba0f9c25fd373cdc38ed011e0e26a07a1e82aa8bb8f13</originalsourceid><addsrcrecordid>eNpVkU1PHDEMhqOqqHyUP8ChyqUSl4U4mdmZuVSCFV_SolaUSq04RN7Ew2Y1m0CSWcG_Z8puET3Zkh-_tl8ztg_iSFUNHJdirNQHtgNNIUairn5_fJdvs92UFkKMpSjrT2xbqgakLIoddneD2YUl5egMP3UhkU8hJp7nmPk1Yeoj8WuXg5kHb6PDjt-QDU_8Z8ZMHL3lJ7c_uPN86lbO3_M_Q0_mE-q69Jlttdgl2t_EPfbr_Ox2cjmafr-4mpxMR6aUMo9saypsCkChlG0UQAPlDEXbGFm2VlXKWKNqsgKABMkxigqBaolYz2Z1C2qPfVvrPvSzJVlDPkfs9EN0S4zPOqDT_1e8m-v7sNKqLsYAYhA43AjE8NhTynrpkhlOQE-hTxoKqKEohSoG9OsaNTGkFKl9GwNC_32Efn3EwH15v9Mb9c_5AThYA4uwIr0IffSDR5vuFzsnjIs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418145034</pqid></control><display><type>article</type><title>Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells</title><source>Journal of Visualized Experiments : JoVE</source><creator>Vevea, Jason D. ; Alessi Wolken, Dana M. ; Swayne, Theresa C. ; White, Adam B. ; Pon, Liza A.</creator><creatorcontrib>Vevea, Jason D. ; Alessi Wolken, Dana M. ; Swayne, Theresa C. ; White, Adam B. ; Pon, Liza A.</creatorcontrib><description>Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.</description><identifier>ISSN: 1940-087X</identifier><identifier>EISSN: 1940-087X</identifier><identifier>DOI: 10.3791/50633</identifier><identifier>PMID: 23912244</identifier><language>eng</language><publisher>United States: MyJove Corporation</publisher><subject>Adenosine Triphosphate - analysis ; Adenosine Triphosphate - metabolism ; Bioengineering ; Biosensing Techniques - methods ; Fluorescence Resonance Energy Transfer - methods ; Green Fluorescent Proteins - analysis ; Green Fluorescent Proteins - metabolism ; Mitochondria - chemistry ; Mitochondria - metabolism ; Oxidation-Reduction ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - metabolism</subject><ispartof>Journal of Visualized Experiments, 2013-07 (77), p.50633-50633</ispartof><rights>Copyright © 2013, Journal of Visualized Experiments</rights><rights>Copyright © 2013, Journal of Visualized Experiments 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-dfc7a941a033d9311915ba0f9c25fd373cdc38ed011e0e26a07a1e82aa8bb8f13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.jove.com/files/email_thumbs/50633.png</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846110/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846110/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,3841,27922,27923,53789,53791</link.rule.ids><linktorsrc>$$Uhttp://dx.doi.org/10.3791/50633$$EView_record_in_Journal_of_Visualized_Experiments$$FView_record_in_$$GJournal_of_Visualized_Experiments</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23912244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vevea, Jason D.</creatorcontrib><creatorcontrib>Alessi Wolken, Dana M.</creatorcontrib><creatorcontrib>Swayne, Theresa C.</creatorcontrib><creatorcontrib>White, Adam B.</creatorcontrib><creatorcontrib>Pon, Liza A.</creatorcontrib><title>Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells</title><title>Journal of Visualized Experiments</title><addtitle>J Vis Exp</addtitle><description>Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.</description><subject>Adenosine Triphosphate - analysis</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Bioengineering</subject><subject>Biosensing Techniques - methods</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Mitochondria - chemistry</subject><subject>Mitochondria - metabolism</subject><subject>Oxidation-Reduction</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - metabolism</subject><issn>1940-087X</issn><issn>1940-087X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1PHDEMhqOqqHyUP8ChyqUSl4U4mdmZuVSCFV_SolaUSq04RN7Ew2Y1m0CSWcG_Z8puET3Zkh-_tl8ztg_iSFUNHJdirNQHtgNNIUairn5_fJdvs92UFkKMpSjrT2xbqgakLIoddneD2YUl5egMP3UhkU8hJp7nmPk1Yeoj8WuXg5kHb6PDjt-QDU_8Z8ZMHL3lJ7c_uPN86lbO3_M_Q0_mE-q69Jlttdgl2t_EPfbr_Ox2cjmafr-4mpxMR6aUMo9saypsCkChlG0UQAPlDEXbGFm2VlXKWKNqsgKABMkxigqBaolYz2Z1C2qPfVvrPvSzJVlDPkfs9EN0S4zPOqDT_1e8m-v7sNKqLsYAYhA43AjE8NhTynrpkhlOQE-hTxoKqKEohSoG9OsaNTGkFKl9GwNC_32Efn3EwH15v9Mb9c_5AThYA4uwIr0IffSDR5vuFzsnjIs</recordid><startdate>20130722</startdate><enddate>20130722</enddate><creator>Vevea, Jason D.</creator><creator>Alessi Wolken, Dana M.</creator><creator>Swayne, Theresa C.</creator><creator>White, Adam B.</creator><creator>Pon, Liza A.</creator><general>MyJove Corporation</general><scope>ALKRA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130722</creationdate><title>Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells</title><author>Vevea, Jason D. ; Alessi Wolken, Dana M. ; Swayne, Theresa C. ; White, Adam B. ; Pon, Liza A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-dfc7a941a033d9311915ba0f9c25fd373cdc38ed011e0e26a07a1e82aa8bb8f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - analysis</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Bioengineering</topic><topic>Biosensing Techniques - methods</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Mitochondria - chemistry</topic><topic>Mitochondria - metabolism</topic><topic>Oxidation-Reduction</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vevea, Jason D.</creatorcontrib><creatorcontrib>Alessi Wolken, Dana M.</creatorcontrib><creatorcontrib>Swayne, Theresa C.</creatorcontrib><creatorcontrib>White, Adam B.</creatorcontrib><creatorcontrib>Pon, Liza A.</creatorcontrib><collection>JoVE Journal: Bioengineering</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Visualized Experiments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vevea, Jason D.</au><au>Alessi Wolken, Dana M.</au><au>Swayne, Theresa C.</au><au>White, Adam B.</au><au>Pon, Liza A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells</atitle><jtitle>Journal of Visualized Experiments</jtitle><addtitle>J Vis Exp</addtitle><date>2013-07-22</date><risdate>2013</risdate><issue>77</issue><spage>50633</spage><epage>50633</epage><pages>50633-50633</pages><issn>1940-087X</issn><eissn>1940-087X</eissn><abstract>Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.</abstract><cop>United States</cop><pub>MyJove Corporation</pub><pmid>23912244</pmid><doi>10.3791/50633</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1940-087X |
ispartof | Journal of Visualized Experiments, 2013-07 (77), p.50633-50633 |
issn | 1940-087X 1940-087X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3846110 |
source | Journal of Visualized Experiments : JoVE |
subjects | Adenosine Triphosphate - analysis Adenosine Triphosphate - metabolism Bioengineering Biosensing Techniques - methods Fluorescence Resonance Energy Transfer - methods Green Fluorescent Proteins - analysis Green Fluorescent Proteins - metabolism Mitochondria - chemistry Mitochondria - metabolism Oxidation-Reduction Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - metabolism |
title | Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_223&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ratiometric%20Biosensors%20that%20Measure%20Mitochondrial%20Redox%20State%20and%20ATP%20in%20Living%20Yeast%20Cells&rft.jtitle=Journal%20of%20Visualized%20Experiments&rft.au=Vevea,%20Jason%20D.&rft.date=2013-07-22&rft.issue=77&rft.spage=50633&rft.epage=50633&rft.pages=50633-50633&rft.issn=1940-087X&rft.eissn=1940-087X&rft_id=info:doi/10.3791/50633&rft_dat=%3Cproquest_223%3E1418145034%3C/proquest_223%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418145034&rft_id=info:pmid/23912244&rfr_iscdi=true |