Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy
In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due t...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in chemistry 2012-04, Vol.50 (4), p.284-288 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 4 |
container_start_page | 284 |
container_title | Magnetic resonance in chemistry |
container_volume | 50 |
creator | Loening, Nikolaus M. van Rossum, Barth-Jan Oschkinat, Hartmut |
description | In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.
Optimal control theory was used to design broadband excitation pulses for solid‐state NMR. For situations where RF power is limited, these pulses offer improved excitation performance in comparison to conventional pulses. We demonstrate the utility of these pulses when used for magic‐angle‐spinning experiments involving 13C on a 900 MHz (21.1 T) spectrometer. |
doi_str_mv | 10.1002/mrc.3800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3845412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>963832395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4470-f89d4c996fa6e38640b9031765f29c7a4b6d459865867a242c1de60cf4abf1cc3</originalsourceid><addsrcrecordid>eNp1kUtv1DAURi0EokNB4heg7GCTYsfvDRIdQQG1ICFQWWE5zvWMIbGDnUDn35NqhhEsWN3FPTr38SH0mOAzgnHzfMjujCqM76AVwVrWjKsvd9EKS6ZrwhU5QQ9K-YYx1lrS--ikaZiQXPAV-nqek-1aG7sKblyY7BRSrMa5L1Aqn3K1DZtt7QP0XVVSH7q6LAxUcXY92FwNdhNhCq7KUFK00UFVRnBTTsWlcfcQ3fN2cT061FP0-fWrT-s39eWHi7frl5e1Y0zi2ivdMae18FYAVYLhVmNKpOC-0U5a1oqOca0EV0LahjWOdCCw88y2njhHT9GLvXec2wE6B3HKtjdjDoPNO5NsMP92YtiaTfppqGKckWYRPD0IcvoxQ5nMEIqDvrcR0lyMFlTRhmq-kM_2pFtuLBn8cQrB5jYNs6RhbtNY0Cd_b3UE_7x_Aeo98Cv0sPuvyFx9XB-EBz6UCW6OvM3fjZBUcnP9_sK8u9JCXXNhGP0NiQSlRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963832395</pqid></control><display><type>article</type><title>Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Loening, Nikolaus M. ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</creator><creatorcontrib>Loening, Nikolaus M. ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</creatorcontrib><description>In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.
Optimal control theory was used to design broadband excitation pulses for solid‐state NMR. For situations where RF power is limited, these pulses offer improved excitation performance in comparison to conventional pulses. We demonstrate the utility of these pulses when used for magic‐angle‐spinning experiments involving 13C on a 900 MHz (21.1 T) spectrometer.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.3800</identifier><identifier>PMID: 22467565</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>broadband excitation pulses ; Carbon Isotopes ; Computer Simulation ; Magnetic Fields ; Magnetic Resonance Spectroscopy - methods ; optimal control ; Radio Waves ; solid-state NMR</subject><ispartof>Magnetic resonance in chemistry, 2012-04, Vol.50 (4), p.284-288</ispartof><rights>Copyright © 2012 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4470-f89d4c996fa6e38640b9031765f29c7a4b6d459865867a242c1de60cf4abf1cc3</citedby><cites>FETCH-LOGICAL-c4470-f89d4c996fa6e38640b9031765f29c7a4b6d459865867a242c1de60cf4abf1cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmrc.3800$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmrc.3800$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22467565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loening, Nikolaus M.</creatorcontrib><creatorcontrib>van Rossum, Barth-Jan</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><title>Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy</title><title>Magnetic resonance in chemistry</title><addtitle>Magn. Reson. Chem</addtitle><description>In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.
Optimal control theory was used to design broadband excitation pulses for solid‐state NMR. For situations where RF power is limited, these pulses offer improved excitation performance in comparison to conventional pulses. We demonstrate the utility of these pulses when used for magic‐angle‐spinning experiments involving 13C on a 900 MHz (21.1 T) spectrometer.</description><subject>broadband excitation pulses</subject><subject>Carbon Isotopes</subject><subject>Computer Simulation</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>optimal control</subject><subject>Radio Waves</subject><subject>solid-state NMR</subject><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAURi0EokNB4heg7GCTYsfvDRIdQQG1ICFQWWE5zvWMIbGDnUDn35NqhhEsWN3FPTr38SH0mOAzgnHzfMjujCqM76AVwVrWjKsvd9EKS6ZrwhU5QQ9K-YYx1lrS--ikaZiQXPAV-nqek-1aG7sKblyY7BRSrMa5L1Aqn3K1DZtt7QP0XVVSH7q6LAxUcXY92FwNdhNhCq7KUFK00UFVRnBTTsWlcfcQ3fN2cT061FP0-fWrT-s39eWHi7frl5e1Y0zi2ivdMae18FYAVYLhVmNKpOC-0U5a1oqOca0EV0LahjWOdCCw88y2njhHT9GLvXec2wE6B3HKtjdjDoPNO5NsMP92YtiaTfppqGKckWYRPD0IcvoxQ5nMEIqDvrcR0lyMFlTRhmq-kM_2pFtuLBn8cQrB5jYNs6RhbtNY0Cd_b3UE_7x_Aeo98Cv0sPuvyFx9XB-EBz6UCW6OvM3fjZBUcnP9_sK8u9JCXXNhGP0NiQSlRw</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Loening, Nikolaus M.</creator><creator>van Rossum, Barth-Jan</creator><creator>Oschkinat, Hartmut</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201204</creationdate><title>Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy</title><author>Loening, Nikolaus M. ; van Rossum, Barth-Jan ; Oschkinat, Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4470-f89d4c996fa6e38640b9031765f29c7a4b6d459865867a242c1de60cf4abf1cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>broadband excitation pulses</topic><topic>Carbon Isotopes</topic><topic>Computer Simulation</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>optimal control</topic><topic>Radio Waves</topic><topic>solid-state NMR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loening, Nikolaus M.</creatorcontrib><creatorcontrib>van Rossum, Barth-Jan</creatorcontrib><creatorcontrib>Oschkinat, Hartmut</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loening, Nikolaus M.</au><au>van Rossum, Barth-Jan</au><au>Oschkinat, Hartmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy</atitle><jtitle>Magnetic resonance in chemistry</jtitle><addtitle>Magn. Reson. Chem</addtitle><date>2012-04</date><risdate>2012</risdate><volume>50</volume><issue>4</issue><spage>284</spage><epage>288</epage><pages>284-288</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>In nuclear magnetic resonance spectroscopy, experimental limits due to the radiofrequency transmitter and/or coil means that conventional radiofrequency pulses (“hard pulses”) are sometimes not sufficiently powerful to excite magnetization uniformly over a desired range of frequencies. Effects due to nonuniform excitation are most frequently encountered at high magnetic fields for nuclei with a large range of chemical shifts. Using optimal control theory, we have designed broadband excitation pulses that are suitable for solid‐state samples under magic‐angle‐spinning conditions. These pulses are easy to implement, robust to spinning frequency variations, and radiofrequency inhomogeneities, and only four times as long as a corresponding hard pulse. The utility of these pulses for uniformly exciting 13C nuclei is demonstrated on a 900 MHz (21.1 T) spectrometer. Copyright © 2012 John Wiley & Sons, Ltd.
Optimal control theory was used to design broadband excitation pulses for solid‐state NMR. For situations where RF power is limited, these pulses offer improved excitation performance in comparison to conventional pulses. We demonstrate the utility of these pulses when used for magic‐angle‐spinning experiments involving 13C on a 900 MHz (21.1 T) spectrometer.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>22467565</pmid><doi>10.1002/mrc.3800</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-1581 |
ispartof | Magnetic resonance in chemistry, 2012-04, Vol.50 (4), p.284-288 |
issn | 0749-1581 1097-458X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3845412 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | broadband excitation pulses Carbon Isotopes Computer Simulation Magnetic Fields Magnetic Resonance Spectroscopy - methods optimal control Radio Waves solid-state NMR |
title | Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20excitation%20pulses%20for%20high-field%20solid-state%20nuclear%20magnetic%20resonance%20spectroscopy&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Loening,%20Nikolaus%20M.&rft.date=2012-04&rft.volume=50&rft.issue=4&rft.spage=284&rft.epage=288&rft.pages=284-288&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.3800&rft_dat=%3Cproquest_pubme%3E963832395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963832395&rft_id=info:pmid/22467565&rfr_iscdi=true |