Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints
Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype bl...
Gespeichert in:
Veröffentlicht in: | BioMed research international 2013-01, Vol.2013 (2013), p.1-13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | BioMed research international |
container_volume | 2013 |
creator | Chen, Wen-Pei Lin, Yaw-Ling Hung, Che-Lun |
description | Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260 tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by exploiting the nonmonotonic property of a common haplotype-evaluation function. |
doi_str_mv | 10.1155/2013/984014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3844216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1508758277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-700efecbb8533054a84f333614be273fc642a50b653b634cbf78e57e18c1c16d3</originalsourceid><addsrcrecordid>eNqNkc1rVDEUxYMotrRduZcsxTI238nbCHWotlC00Oo25OXdzETfJGOSqfS_9w1Th7rSu7kXzo_DPRyEXlHyjlIpzxih_KwzglDxDB0yTsVMUUGf72_OD9BJrd_JNIYq0qmX6IAJTjvViUPkLkKIPkJq-NKtx9we1oA_jNn_wDeutNhiTjEtsEsDvnMLfPv5Bt_CCH4r4PNxkUtsy1XFmzRAwd9ciXlT8Tyn2oqLqdVj9CK4scLJ4z5CXz9e3M0vZ9dfPl3Nz69nXmjWZpoQCOD73kjOiRTOiMA5n8L0wDQPXgnmJOmV5L3iwvdBG5AaqPHUUzXwI_R-57ve9CsY_BSpuNGuS1y58mCzi_ZvJcWlXeR7y40QjKrJ4M2jQck_N1CbXcXqYRxdgimTpZIYLQ3T-t-oUIprZTo-oac71Jdca4Gw_4gSu63Qbiu0uwon-vXTEHv2T2ET8HYHLGMa3K_4f24wIRDcE5hIqRn_DS9trYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466376893</pqid></control><display><type>article</type><title>Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Chen, Wen-Pei ; Lin, Yaw-Ling ; Hung, Che-Lun</creator><contributor>Bogdanos, Dimitrios P.</contributor><creatorcontrib>Chen, Wen-Pei ; Lin, Yaw-Ling ; Hung, Che-Lun ; Bogdanos, Dimitrios P.</creatorcontrib><description>Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260 tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by exploiting the nonmonotonic property of a common haplotype-evaluation function.</description><identifier>ISSN: 2314-6133</identifier><identifier>EISSN: 2314-6141</identifier><identifier>DOI: 10.1155/2013/984014</identifier><identifier>PMID: 24319694</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Chromosomes, Human, Pair 21 - genetics ; Genetic Variation ; Genome, Human ; Genome-Wide Association Study - statistics & numerical data ; Haplotypes ; Humans ; Linkage Disequilibrium ; Models, Genetic ; Polymorphism, Single Nucleotide ; Software Design</subject><ispartof>BioMed research international, 2013-01, Vol.2013 (2013), p.1-13</ispartof><rights>Copyright © 2013 Wen-Pei Chen et al.</rights><rights>Copyright © 2013 Wen-Pei Chen et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-700efecbb8533054a84f333614be273fc642a50b653b634cbf78e57e18c1c16d3</citedby><cites>FETCH-LOGICAL-c472t-700efecbb8533054a84f333614be273fc642a50b653b634cbf78e57e18c1c16d3</cites><orcidid>0000-0002-8906-9367 ; 0000-0001-7189-2841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844216/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3844216/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24319694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bogdanos, Dimitrios P.</contributor><creatorcontrib>Chen, Wen-Pei</creatorcontrib><creatorcontrib>Lin, Yaw-Ling</creatorcontrib><creatorcontrib>Hung, Che-Lun</creatorcontrib><title>Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints</title><title>BioMed research international</title><addtitle>Biomed Res Int</addtitle><description>Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260 tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by exploiting the nonmonotonic property of a common haplotype-evaluation function.</description><subject>Algorithms</subject><subject>Chromosomes, Human, Pair 21 - genetics</subject><subject>Genetic Variation</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Linkage Disequilibrium</subject><subject>Models, Genetic</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Software Design</subject><issn>2314-6133</issn><issn>2314-6141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1rVDEUxYMotrRduZcsxTI238nbCHWotlC00Oo25OXdzETfJGOSqfS_9w1Th7rSu7kXzo_DPRyEXlHyjlIpzxih_KwzglDxDB0yTsVMUUGf72_OD9BJrd_JNIYq0qmX6IAJTjvViUPkLkKIPkJq-NKtx9we1oA_jNn_wDeutNhiTjEtsEsDvnMLfPv5Bt_CCH4r4PNxkUtsy1XFmzRAwd9ciXlT8Tyn2oqLqdVj9CK4scLJ4z5CXz9e3M0vZ9dfPl3Nz69nXmjWZpoQCOD73kjOiRTOiMA5n8L0wDQPXgnmJOmV5L3iwvdBG5AaqPHUUzXwI_R-57ve9CsY_BSpuNGuS1y58mCzi_ZvJcWlXeR7y40QjKrJ4M2jQck_N1CbXcXqYRxdgimTpZIYLQ3T-t-oUIprZTo-oac71Jdca4Gw_4gSu63Qbiu0uwon-vXTEHv2T2ET8HYHLGMa3K_4f24wIRDcE5hIqRn_DS9trYQ</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Chen, Wen-Pei</creator><creator>Lin, Yaw-Ling</creator><creator>Hung, Che-Lun</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8906-9367</orcidid><orcidid>https://orcid.org/0000-0001-7189-2841</orcidid></search><sort><creationdate>20130101</creationdate><title>Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints</title><author>Chen, Wen-Pei ; Lin, Yaw-Ling ; Hung, Che-Lun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-700efecbb8533054a84f333614be273fc642a50b653b634cbf78e57e18c1c16d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Chromosomes, Human, Pair 21 - genetics</topic><topic>Genetic Variation</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Linkage Disequilibrium</topic><topic>Models, Genetic</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Software Design</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wen-Pei</creatorcontrib><creatorcontrib>Lin, Yaw-Ling</creatorcontrib><creatorcontrib>Hung, Che-Lun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BioMed research international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wen-Pei</au><au>Lin, Yaw-Ling</au><au>Hung, Che-Lun</au><au>Bogdanos, Dimitrios P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints</atitle><jtitle>BioMed research international</jtitle><addtitle>Biomed Res Int</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>2314-6133</issn><eissn>2314-6141</eissn><abstract>Patterns of linkage disequilibrium plays a central role in genome-wide association studies aimed at identifying genetic variation responsible for common human diseases. These patterns in human chromosomes show a block-like structure, and regions of high linkage disequilibrium are called haplotype blocks. A small subset of SNPs, called tag SNPs, is sufficient to capture the haplotype patterns in each haplotype block. Previously developed algorithms completely partition a haplotype sample into blocks while attempting to minimize the number of tag SNPs. However, when resource limitations prevent genotyping all the tag SNPs, it is desirable to restrict their number. We propose two dynamic programming algorithms, incorporating many diversity evaluation functions, for haplotype block partitioning using a limited number of tag SNPs. We use the proposed algorithms to partition the chromosome 21 haplotype data. When the sample is fully partitioned into blocks by our algorithms, the 2,266 blocks and 3,260 tag SNPs are fewer than those identified by previous studies. We also demonstrate that our algorithms find the optimal solution by exploiting the nonmonotonic property of a common haplotype-evaluation function.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>24319694</pmid><doi>10.1155/2013/984014</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8906-9367</orcidid><orcidid>https://orcid.org/0000-0001-7189-2841</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2314-6133 |
ispartof | BioMed research international, 2013-01, Vol.2013 (2013), p.1-13 |
issn | 2314-6133 2314-6141 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3844216 |
source | MEDLINE; PubMed Central Open Access; Wiley Online Library Open Access; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Chromosomes, Human, Pair 21 - genetics Genetic Variation Genome, Human Genome-Wide Association Study - statistics & numerical data Haplotypes Humans Linkage Disequilibrium Models, Genetic Polymorphism, Single Nucleotide Software Design |
title | Efficient Haplotype Block Partitioning and Tag SNP Selection Algorithms under Various Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Haplotype%20Block%20Partitioning%20and%20Tag%20SNP%20Selection%20Algorithms%20under%20Various%20Constraints&rft.jtitle=BioMed%20research%20international&rft.au=Chen,%20Wen-Pei&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=2314-6133&rft.eissn=2314-6141&rft_id=info:doi/10.1155/2013/984014&rft_dat=%3Cproquest_pubme%3E1508758277%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466376893&rft_id=info:pmid/24319694&rfr_iscdi=true |