A Probabilistic Approach for Breast Boundary Extraction in Mammograms

The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-19
Hauptverfasser: Habibi Aghdam, Hamed, Puig, Domenec, Solanas, Agusti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 2013
container_start_page 1
container_title Computational and mathematical methods in medicine
container_volume 2013
creator Habibi Aghdam, Hamed
Puig, Domenec
Solanas, Agusti
description The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.
doi_str_mv 10.1155/2013/408595
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1467063181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</originalsourceid><addsrcrecordid>eNqFkEtLxDAURoMovleulS5FGc07mY0wM4wPUHSh4C6kaepE2qYmrY9_b6Q66MrVvXAP3_04AOwheIIQY6cYInJKoWRjtgI2kaByxAWSq8sdPm6ArRifIWRIMLQONjAlmDJMNsF8kt0Fn-vcVS52zmSTtg1em0VW-pBNg9Wxy6a-bwodPrL5exe06ZxvMtdkN7qu_VPQddwBa6Wuot39ntvg4Xx-P7scXd9eXM0m1yNDiexGOcZSaCQw4aUkzBhsGRS0xNRASzhESGJdlkWe6kNJCy7FeIygwRznQlNOtsHZkNv2eW0LY5vUp1JtcHWqp7x26u-lcQv15F8VkRRDTlLA4XdA8C-9jZ2qXTS2qnRjfR8VokkXJ0iihB4PqAk-xmDL5RsE1Zd49SVeDeITffC72ZL9MZ2AowFYuOTyzf2Ttj_ANiG21EuY8rGEgnwC9AKTrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467063181</pqid></control><display><type>article</type><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti</creator><contributor>Maex, Reinoud</contributor><creatorcontrib>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti ; Maex, Reinoud</creatorcontrib><description>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/408595</identifier><identifier>PMID: 24324523</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Breast - pathology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Databases, Factual - statistics &amp; numerical data ; Female ; Humans ; Mammography - statistics &amp; numerical data ; Models, Statistical ; Radiographic Image Interpretation, Computer-Assisted - methods</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-19</ispartof><rights>Copyright © 2013 Hamed Habibi Aghdam et al.</rights><rights>Copyright © 2013 Hamed Habibi Aghdam et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</citedby><cites>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</cites><orcidid>0000-0002-4881-6215 ; 0000-0002-0562-4205 ; 0000-0002-4881-9694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24324523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maex, Reinoud</contributor><creatorcontrib>Habibi Aghdam, Hamed</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><creatorcontrib>Solanas, Agusti</creatorcontrib><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast - pathology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Databases, Factual - statistics &amp; numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Mammography - statistics &amp; numerical data</subject><subject>Models, Statistical</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAURoMovleulS5FGc07mY0wM4wPUHSh4C6kaepE2qYmrY9_b6Q66MrVvXAP3_04AOwheIIQY6cYInJKoWRjtgI2kaByxAWSq8sdPm6ArRifIWRIMLQONjAlmDJMNsF8kt0Fn-vcVS52zmSTtg1em0VW-pBNg9Wxy6a-bwodPrL5exe06ZxvMtdkN7qu_VPQddwBa6Wuot39ntvg4Xx-P7scXd9eXM0m1yNDiexGOcZSaCQw4aUkzBhsGRS0xNRASzhESGJdlkWe6kNJCy7FeIygwRznQlNOtsHZkNv2eW0LY5vUp1JtcHWqp7x26u-lcQv15F8VkRRDTlLA4XdA8C-9jZ2qXTS2qnRjfR8VokkXJ0iihB4PqAk-xmDL5RsE1Zd49SVeDeITffC72ZL9MZ2AowFYuOTyzf2Ttj_ANiG21EuY8rGEgnwC9AKTrA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Habibi Aghdam, Hamed</creator><creator>Puig, Domenec</creator><creator>Solanas, Agusti</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4881-6215</orcidid><orcidid>https://orcid.org/0000-0002-0562-4205</orcidid><orcidid>https://orcid.org/0000-0002-4881-9694</orcidid></search><sort><creationdate>20130101</creationdate><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><author>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast - pathology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Databases, Factual - statistics &amp; numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Mammography - statistics &amp; numerical data</topic><topic>Models, Statistical</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habibi Aghdam, Hamed</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><creatorcontrib>Solanas, Agusti</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habibi Aghdam, Hamed</au><au>Puig, Domenec</au><au>Solanas, Agusti</au><au>Maex, Reinoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24324523</pmid><doi>10.1155/2013/408595</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4881-6215</orcidid><orcidid>https://orcid.org/0000-0002-0562-4205</orcidid><orcidid>https://orcid.org/0000-0002-4881-9694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-670X
ispartof Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-19
issn 1748-670X
1748-6718
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842063
source MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Artificial Intelligence
Breast - pathology
Breast Neoplasms - diagnostic imaging
Breast Neoplasms - pathology
Databases, Factual - statistics & numerical data
Female
Humans
Mammography - statistics & numerical data
Models, Statistical
Radiographic Image Interpretation, Computer-Assisted - methods
title A Probabilistic Approach for Breast Boundary Extraction in Mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Approach%20for%20Breast%20Boundary%20Extraction%20in%20Mammograms&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Habibi%20Aghdam,%20Hamed&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/408595&rft_dat=%3Cproquest_pubme%3E1467063181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467063181&rft_id=info:pmid/24324523&rfr_iscdi=true