A Probabilistic Approach for Breast Boundary Extraction in Mammograms
The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thre...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2013-01, Vol.2013 (2013), p.1-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2013 |
creator | Habibi Aghdam, Hamed Puig, Domenec Solanas, Agusti |
description | The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%. |
doi_str_mv | 10.1155/2013/408595 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1467063181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</originalsourceid><addsrcrecordid>eNqFkEtLxDAURoMovleulS5FGc07mY0wM4wPUHSh4C6kaepE2qYmrY9_b6Q66MrVvXAP3_04AOwheIIQY6cYInJKoWRjtgI2kaByxAWSq8sdPm6ArRifIWRIMLQONjAlmDJMNsF8kt0Fn-vcVS52zmSTtg1em0VW-pBNg9Wxy6a-bwodPrL5exe06ZxvMtdkN7qu_VPQddwBa6Wuot39ntvg4Xx-P7scXd9eXM0m1yNDiexGOcZSaCQw4aUkzBhsGRS0xNRASzhESGJdlkWe6kNJCy7FeIygwRznQlNOtsHZkNv2eW0LY5vUp1JtcHWqp7x26u-lcQv15F8VkRRDTlLA4XdA8C-9jZ2qXTS2qnRjfR8VokkXJ0iihB4PqAk-xmDL5RsE1Zd49SVeDeITffC72ZL9MZ2AowFYuOTyzf2Ttj_ANiG21EuY8rGEgnwC9AKTrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467063181</pqid></control><display><type>article</type><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti</creator><contributor>Maex, Reinoud</contributor><creatorcontrib>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti ; Maex, Reinoud</creatorcontrib><description>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2013/408595</identifier><identifier>PMID: 24324523</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Puplishing Corporation</publisher><subject>Algorithms ; Artificial Intelligence ; Breast - pathology ; Breast Neoplasms - diagnostic imaging ; Breast Neoplasms - pathology ; Databases, Factual - statistics & numerical data ; Female ; Humans ; Mammography - statistics & numerical data ; Models, Statistical ; Radiographic Image Interpretation, Computer-Assisted - methods</subject><ispartof>Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-19</ispartof><rights>Copyright © 2013 Hamed Habibi Aghdam et al.</rights><rights>Copyright © 2013 Hamed Habibi Aghdam et al. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</citedby><cites>FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</cites><orcidid>0000-0002-4881-6215 ; 0000-0002-0562-4205 ; 0000-0002-4881-9694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842063/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842063/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24324523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maex, Reinoud</contributor><creatorcontrib>Habibi Aghdam, Hamed</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><creatorcontrib>Solanas, Agusti</creatorcontrib><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Breast - pathology</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast Neoplasms - pathology</subject><subject>Databases, Factual - statistics & numerical data</subject><subject>Female</subject><subject>Humans</subject><subject>Mammography - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNqFkEtLxDAURoMovleulS5FGc07mY0wM4wPUHSh4C6kaepE2qYmrY9_b6Q66MrVvXAP3_04AOwheIIQY6cYInJKoWRjtgI2kaByxAWSq8sdPm6ArRifIWRIMLQONjAlmDJMNsF8kt0Fn-vcVS52zmSTtg1em0VW-pBNg9Wxy6a-bwodPrL5exe06ZxvMtdkN7qu_VPQddwBa6Wuot39ntvg4Xx-P7scXd9eXM0m1yNDiexGOcZSaCQw4aUkzBhsGRS0xNRASzhESGJdlkWe6kNJCy7FeIygwRznQlNOtsHZkNv2eW0LY5vUp1JtcHWqp7x26u-lcQv15F8VkRRDTlLA4XdA8C-9jZ2qXTS2qnRjfR8VokkXJ0iihB4PqAk-xmDL5RsE1Zd49SVeDeITffC72ZL9MZ2AowFYuOTyzf2Ttj_ANiG21EuY8rGEgnwC9AKTrA</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Habibi Aghdam, Hamed</creator><creator>Puig, Domenec</creator><creator>Solanas, Agusti</creator><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4881-6215</orcidid><orcidid>https://orcid.org/0000-0002-0562-4205</orcidid><orcidid>https://orcid.org/0000-0002-4881-9694</orcidid></search><sort><creationdate>20130101</creationdate><title>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</title><author>Habibi Aghdam, Hamed ; Puig, Domenec ; Solanas, Agusti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b2287a17236f835cc2e5074f24c0e3601182affdb718084d6879910c262b7a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Breast - pathology</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast Neoplasms - pathology</topic><topic>Databases, Factual - statistics & numerical data</topic><topic>Female</topic><topic>Humans</topic><topic>Mammography - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habibi Aghdam, Hamed</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><creatorcontrib>Solanas, Agusti</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habibi Aghdam, Hamed</au><au>Puig, Domenec</au><au>Solanas, Agusti</au><au>Maex, Reinoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Approach for Breast Boundary Extraction in Mammograms</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>The extraction of the breast boundary is crucial to perform further analysis of mammogram. Methods to extract the breast boundary can be classified into two categories: methods based on image processing techniques and those based on models. The former use image transformation techniques such as thresholding, morphological operations, and region growing. In the second category, the boundary is extracted using more advanced techniques, such as the active contour model. The problem with thresholding methods is that it is a hard to automatically find the optimal threshold value by using histogram information. On the other hand, active contour models require defining a starting point close to the actual boundary to be able to successfully extract the boundary. In this paper, we propose a probabilistic approach to address the aforementioned problems. In our approach we use local binary patterns to describe the texture around each pixel. In addition, the smoothness of the boundary is handled by using a new probability model. Experimental results show that the proposed method reaches 38% and 50% improvement with respect to the results obtained by the active contour model and threshold-based methods respectively, and it increases the stability of the boundary extraction process up to 86%.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Puplishing Corporation</pub><pmid>24324523</pmid><doi>10.1155/2013/408595</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4881-6215</orcidid><orcidid>https://orcid.org/0000-0002-0562-4205</orcidid><orcidid>https://orcid.org/0000-0002-4881-9694</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2013-01, Vol.2013 (2013), p.1-19 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3842063 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Artificial Intelligence Breast - pathology Breast Neoplasms - diagnostic imaging Breast Neoplasms - pathology Databases, Factual - statistics & numerical data Female Humans Mammography - statistics & numerical data Models, Statistical Radiographic Image Interpretation, Computer-Assisted - methods |
title | A Probabilistic Approach for Breast Boundary Extraction in Mammograms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Approach%20for%20Breast%20Boundary%20Extraction%20in%20Mammograms&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Habibi%20Aghdam,%20Hamed&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2013/408595&rft_dat=%3Cproquest_pubme%3E1467063181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467063181&rft_id=info:pmid/24324523&rfr_iscdi=true |