Volume conduction energy transfer for implantable devices
A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfe...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical research 2013-11, Vol.27 (6), p.509-514 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 6 |
container_start_page | 509 |
container_title | Journal of biomedical research |
container_volume | 27 |
creator | Zhu, Wei Fang, Wenzhu Zhan, Shanshan Zhou, Yuxuan Gao, Qing Gao, Xingya |
description | A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source. |
doi_str_mv | 10.7555/JBR.27.20130090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48066497</cqvip_id><sourcerecordid>1469212347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</originalsourceid><addsrcrecordid>eNpVkMtLxDAQxnNQVHTP3qTevHTNq3lcBBWfCIKo15Cm01ppkzVpF_a_t7LronOZw_zmm28-hI4JnsuiKM4fr17mVM4pJgxjjXfQARGS54phso9mKX3iqZgWlKs9tE85VYXm-gDp99CNPWQu-Gp0Qxt8Bh5is8qGaH2qIWZ1iFnbLzrrB1t2kFWwbB2kI7Rb2y7BbNMP0dvtzev1ff70fPdwffmUO070kCtiy4piZyWtZMWIq6VmzBFR0lpTXGgFDBx3WoPCTtdCWVapQjAqocK8ZofoYq27GMseKgd-ctaZRWx7G1cm2Nb8n_j2wzRhaZjihEsxCZxtBGL4GiENpm-Tg256CMKYDOFCU0IZlxN6vkZdDClFqLdnCDY_OZspZ0Ol-c152jj5627L_yY8AacbyY_gm6_WN1uGKywE15J9A9_4hqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469212347</pqid></control><display><type>article</type><title>Volume conduction energy transfer for implantable devices</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</creator><creatorcontrib>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</creatorcontrib><description>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</description><identifier>ISSN: 1674-8301</identifier><identifier>DOI: 10.7555/JBR.27.20130090</identifier><identifier>PMID: 24285949</identifier><language>eng</language><publisher>China: Editorial Department of Journal of Biomedical Research</publisher><subject>Research Paper ; 容积 ; 导电 ; 植入式 ; 电力供应 ; 能量传递 ; 能量转移效率 ; 装置 ; 通用模型</subject><ispartof>Journal of biomedical research, 2013-11, Vol.27 (6), p.509-514</ispartof><rights>2013 by the Journal of Biomedical Research. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85389A/85389A.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841476/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841476/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24285949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Fang, Wenzhu</creatorcontrib><creatorcontrib>Zhan, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Gao, Xingya</creatorcontrib><title>Volume conduction energy transfer for implantable devices</title><title>Journal of biomedical research</title><addtitle>Journal of Biomedical Research</addtitle><description>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</description><subject>Research Paper</subject><subject>容积</subject><subject>导电</subject><subject>植入式</subject><subject>电力供应</subject><subject>能量传递</subject><subject>能量转移效率</subject><subject>装置</subject><subject>通用模型</subject><issn>1674-8301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkMtLxDAQxnNQVHTP3qTevHTNq3lcBBWfCIKo15Cm01ppkzVpF_a_t7LronOZw_zmm28-hI4JnsuiKM4fr17mVM4pJgxjjXfQARGS54phso9mKX3iqZgWlKs9tE85VYXm-gDp99CNPWQu-Gp0Qxt8Bh5is8qGaH2qIWZ1iFnbLzrrB1t2kFWwbB2kI7Rb2y7BbNMP0dvtzev1ff70fPdwffmUO070kCtiy4piZyWtZMWIq6VmzBFR0lpTXGgFDBx3WoPCTtdCWVapQjAqocK8ZofoYq27GMseKgd-ctaZRWx7G1cm2Nb8n_j2wzRhaZjihEsxCZxtBGL4GiENpm-Tg256CMKYDOFCU0IZlxN6vkZdDClFqLdnCDY_OZspZ0Ol-c152jj5627L_yY8AacbyY_gm6_WN1uGKywE15J9A9_4hqo</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Zhu, Wei</creator><creator>Fang, Wenzhu</creator><creator>Zhan, Shanshan</creator><creator>Zhou, Yuxuan</creator><creator>Gao, Qing</creator><creator>Gao, Xingya</creator><general>Editorial Department of Journal of Biomedical Research</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>Volume conduction energy transfer for implantable devices</title><author>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Research Paper</topic><topic>容积</topic><topic>导电</topic><topic>植入式</topic><topic>电力供应</topic><topic>能量传递</topic><topic>能量转移效率</topic><topic>装置</topic><topic>通用模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Fang, Wenzhu</creatorcontrib><creatorcontrib>Zhan, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Gao, Xingya</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wei</au><au>Fang, Wenzhu</au><au>Zhan, Shanshan</au><au>Zhou, Yuxuan</au><au>Gao, Qing</au><au>Gao, Xingya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume conduction energy transfer for implantable devices</atitle><jtitle>Journal of biomedical research</jtitle><addtitle>Journal of Biomedical Research</addtitle><date>2013-11</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>509</spage><epage>514</epage><pages>509-514</pages><issn>1674-8301</issn><abstract>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</abstract><cop>China</cop><pub>Editorial Department of Journal of Biomedical Research</pub><pmid>24285949</pmid><doi>10.7555/JBR.27.20130090</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-8301 |
ispartof | Journal of biomedical research, 2013-11, Vol.27 (6), p.509-514 |
issn | 1674-8301 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841476 |
source | EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Research Paper 容积 导电 植入式 电力供应 能量传递 能量转移效率 装置 通用模型 |
title | Volume conduction energy transfer for implantable devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20conduction%20energy%20transfer%20for%20implantable%20devices&rft.jtitle=Journal%20of%20biomedical%20research&rft.au=Zhu,%20Wei&rft.date=2013-11&rft.volume=27&rft.issue=6&rft.spage=509&rft.epage=514&rft.pages=509-514&rft.issn=1674-8301&rft_id=info:doi/10.7555/JBR.27.20130090&rft_dat=%3Cproquest_pubme%3E1469212347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469212347&rft_id=info:pmid/24285949&rft_cqvip_id=48066497&rfr_iscdi=true |