Volume conduction energy transfer for implantable devices

A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical research 2013-11, Vol.27 (6), p.509-514
Hauptverfasser: Zhu, Wei, Fang, Wenzhu, Zhan, Shanshan, Zhou, Yuxuan, Gao, Qing, Gao, Xingya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 6
container_start_page 509
container_title Journal of biomedical research
container_volume 27
creator Zhu, Wei
Fang, Wenzhu
Zhan, Shanshan
Zhou, Yuxuan
Gao, Qing
Gao, Xingya
description A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.
doi_str_mv 10.7555/JBR.27.20130090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>48066497</cqvip_id><sourcerecordid>1469212347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</originalsourceid><addsrcrecordid>eNpVkMtLxDAQxnNQVHTP3qTevHTNq3lcBBWfCIKo15Cm01ppkzVpF_a_t7LronOZw_zmm28-hI4JnsuiKM4fr17mVM4pJgxjjXfQARGS54phso9mKX3iqZgWlKs9tE85VYXm-gDp99CNPWQu-Gp0Qxt8Bh5is8qGaH2qIWZ1iFnbLzrrB1t2kFWwbB2kI7Rb2y7BbNMP0dvtzev1ff70fPdwffmUO070kCtiy4piZyWtZMWIq6VmzBFR0lpTXGgFDBx3WoPCTtdCWVapQjAqocK8ZofoYq27GMseKgd-ctaZRWx7G1cm2Nb8n_j2wzRhaZjihEsxCZxtBGL4GiENpm-Tg256CMKYDOFCU0IZlxN6vkZdDClFqLdnCDY_OZspZ0Ol-c152jj5627L_yY8AacbyY_gm6_WN1uGKywE15J9A9_4hqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469212347</pqid></control><display><type>article</type><title>Volume conduction energy transfer for implantable devices</title><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</creator><creatorcontrib>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</creatorcontrib><description>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</description><identifier>ISSN: 1674-8301</identifier><identifier>DOI: 10.7555/JBR.27.20130090</identifier><identifier>PMID: 24285949</identifier><language>eng</language><publisher>China: Editorial Department of Journal of Biomedical Research</publisher><subject>Research Paper ; 容积 ; 导电 ; 植入式 ; 电力供应 ; 能量传递 ; 能量转移效率 ; 装置 ; 通用模型</subject><ispartof>Journal of biomedical research, 2013-11, Vol.27 (6), p.509-514</ispartof><rights>2013 by the Journal of Biomedical Research. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85389A/85389A.jpg</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841476/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841476/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24285949$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Fang, Wenzhu</creatorcontrib><creatorcontrib>Zhan, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Gao, Xingya</creatorcontrib><title>Volume conduction energy transfer for implantable devices</title><title>Journal of biomedical research</title><addtitle>Journal of Biomedical Research</addtitle><description>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</description><subject>Research Paper</subject><subject>容积</subject><subject>导电</subject><subject>植入式</subject><subject>电力供应</subject><subject>能量传递</subject><subject>能量转移效率</subject><subject>装置</subject><subject>通用模型</subject><issn>1674-8301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkMtLxDAQxnNQVHTP3qTevHTNq3lcBBWfCIKo15Cm01ppkzVpF_a_t7LronOZw_zmm28-hI4JnsuiKM4fr17mVM4pJgxjjXfQARGS54phso9mKX3iqZgWlKs9tE85VYXm-gDp99CNPWQu-Gp0Qxt8Bh5is8qGaH2qIWZ1iFnbLzrrB1t2kFWwbB2kI7Rb2y7BbNMP0dvtzev1ff70fPdwffmUO070kCtiy4piZyWtZMWIq6VmzBFR0lpTXGgFDBx3WoPCTtdCWVapQjAqocK8ZofoYq27GMseKgd-ctaZRWx7G1cm2Nb8n_j2wzRhaZjihEsxCZxtBGL4GiENpm-Tg256CMKYDOFCU0IZlxN6vkZdDClFqLdnCDY_OZspZ0Ol-c152jj5627L_yY8AacbyY_gm6_WN1uGKywE15J9A9_4hqo</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Zhu, Wei</creator><creator>Fang, Wenzhu</creator><creator>Zhan, Shanshan</creator><creator>Zhou, Yuxuan</creator><creator>Gao, Qing</creator><creator>Gao, Xingya</creator><general>Editorial Department of Journal of Biomedical Research</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W91</scope><scope>~WA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201311</creationdate><title>Volume conduction energy transfer for implantable devices</title><author>Zhu, Wei ; Fang, Wenzhu ; Zhan, Shanshan ; Zhou, Yuxuan ; Gao, Qing ; Gao, Xingya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-81abd20ca72d7d31cf7933c16b2f920598e3ec4c99e80c9f68a3d856327ed04f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Research Paper</topic><topic>容积</topic><topic>导电</topic><topic>植入式</topic><topic>电力供应</topic><topic>能量传递</topic><topic>能量转移效率</topic><topic>装置</topic><topic>通用模型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Wei</creatorcontrib><creatorcontrib>Fang, Wenzhu</creatorcontrib><creatorcontrib>Zhan, Shanshan</creatorcontrib><creatorcontrib>Zhou, Yuxuan</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Gao, Xingya</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-医药卫生</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of biomedical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Wei</au><au>Fang, Wenzhu</au><au>Zhan, Shanshan</au><au>Zhou, Yuxuan</au><au>Gao, Qing</au><au>Gao, Xingya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volume conduction energy transfer for implantable devices</atitle><jtitle>Journal of biomedical research</jtitle><addtitle>Journal of Biomedical Research</addtitle><date>2013-11</date><risdate>2013</risdate><volume>27</volume><issue>6</issue><spage>509</spage><epage>514</epage><pages>509-514</pages><issn>1674-8301</issn><abstract>A common model of power supply for implantable devices was established to study factors affecting volume conduction energy transfer. Electromagnetic and equivalent circuit models were constructed to study the effect of separation between the source electrode pairs on volume conduction energy transfer. In addition, the parameters of external signal including waveform, amplitude and frequency were analyzed. As the current amplitude did not lead to tissue injury and the current frequency did not cause nerve excitability, the recommended separation be- tween the source electrodes was 3 cm, the proposed waveform of signal source was sinusoidal wave and the opti- mal frequency was 200 KHz. In agar experiment and swine skin experiment, the current transfer efficiencies were 28.13% and 20.65%, respectively, and the energy transfer efficiencies were 9.86% and 6.90%, respectively. In conclusion, we can achieve optimal efficiency of energy transfer by appropriately setting the separation between the source electrode parameters of the signal source.</abstract><cop>China</cop><pub>Editorial Department of Journal of Biomedical Research</pub><pmid>24285949</pmid><doi>10.7555/JBR.27.20130090</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-8301
ispartof Journal of biomedical research, 2013-11, Vol.27 (6), p.509-514
issn 1674-8301
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841476
source EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Research Paper
容积
导电
植入式
电力供应
能量传递
能量转移效率
装置
通用模型
title Volume conduction energy transfer for implantable devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volume%20conduction%20energy%20transfer%20for%20implantable%20devices&rft.jtitle=Journal%20of%20biomedical%20research&rft.au=Zhu,%20Wei&rft.date=2013-11&rft.volume=27&rft.issue=6&rft.spage=509&rft.epage=514&rft.pages=509-514&rft.issn=1674-8301&rft_id=info:doi/10.7555/JBR.27.20130090&rft_dat=%3Cproquest_pubme%3E1469212347%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469212347&rft_id=info:pmid/24285949&rft_cqvip_id=48066497&rfr_iscdi=true