Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice
The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine relea...
Gespeichert in:
Veröffentlicht in: | The Journal of neuroscience 2013-11, Vol.33 (48), p.18792-18805 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18805 |
---|---|
container_issue | 48 |
container_start_page | 18792 |
container_title | The Journal of neuroscience |
container_volume | 33 |
creator | Holloway, Benjamin B Stornetta, Ruth L Bochorishvili, Genrieta Erisir, Alev Viar, Kenneth E Guyenet, Patrice G |
description | The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons. |
doi_str_mv | 10.1523/JNEUROSCI.2916-13.2013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462764678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRAVHQq_UHnJJoNfcZwNEhq1UFRaCejacpybqVFiD7ZTNDs-HUdTRnTVzfW1zkP36CB0Tsma1oy__3Jzcfft9vvmas1aKivK14xQ_gKtCtpWTBD6Eq0Ia0glRSNO0euUfhJCGkKbV-iUCaZqpeQK_fkafEh7b3bZWbwd52wmkyFuy8_Y7B5MdsHjMOAx2DlhGyDOI5TN-B6HfA-xIL_L7KJxPmWYsA_R9BH8wcXDHINPuNvjwsYbii2MY8LO48lZeINOBjMmePv4nqG7y4sfm8_V9e2nq83H68rWhOSKDQyk5VL0A4eu7S1w2_YlziANSMW4UJRB3bOuZZwTIdSgjDWkYbQ3pB74Gfpw8N3N3QRF73M0o95FN5m418E4_RTx7l5vw4PmSlAh2mLw7tEghl8zpKwnl5YoxkOYk6Z1TSVjlKjnqUKyRgrZLFR5oNoYUoowHC-iRC9N62PTemlaU66Xpovw_P88R9m_avlfBv2pQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462764678</pqid></control><display><type>article</type><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</creator><creatorcontrib>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</creatorcontrib><description>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2916-13.2013</identifier><identifier>PMID: 24285886</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain Stem - cytology ; Brain Stem - physiology ; Channelrhodopsins ; Dependovirus - genetics ; Dopamine beta-Hydroxylase - genetics ; Electrophysiological Phenomena - genetics ; Electrophysiological Phenomena - physiology ; Excitatory Postsynaptic Potentials - physiology ; Genetic Vectors ; Glutamic Acid - physiology ; In Vitro Techniques ; Locus Coeruleus - chemistry ; Locus Coeruleus - physiology ; Medulla Oblongata - cytology ; Medulla Oblongata - physiology ; Mice ; Microscopy, Electron ; Microscopy, Fluorescence ; Neurons - physiology ; Optogenetics ; Parasympathetic Nervous System - physiology ; Photic Stimulation ; Sympathetic Nervous System - physiology ; Synapses - physiology ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (48), p.18792-18805</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3318792-14$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</citedby><cites>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841449/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841449/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24285886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holloway, Benjamin B</creatorcontrib><creatorcontrib>Stornetta, Ruth L</creatorcontrib><creatorcontrib>Bochorishvili, Genrieta</creatorcontrib><creatorcontrib>Erisir, Alev</creatorcontrib><creatorcontrib>Viar, Kenneth E</creatorcontrib><creatorcontrib>Guyenet, Patrice G</creatorcontrib><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</description><subject>Animals</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - physiology</subject><subject>Channelrhodopsins</subject><subject>Dependovirus - genetics</subject><subject>Dopamine beta-Hydroxylase - genetics</subject><subject>Electrophysiological Phenomena - genetics</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Genetic Vectors</subject><subject>Glutamic Acid - physiology</subject><subject>In Vitro Techniques</subject><subject>Locus Coeruleus - chemistry</subject><subject>Locus Coeruleus - physiology</subject><subject>Medulla Oblongata - cytology</subject><subject>Medulla Oblongata - physiology</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Parasympathetic Nervous System - physiology</subject><subject>Photic Stimulation</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Synapses - physiology</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRAVHQq_UHnJJoNfcZwNEhq1UFRaCejacpybqVFiD7ZTNDs-HUdTRnTVzfW1zkP36CB0Tsma1oy__3Jzcfft9vvmas1aKivK14xQ_gKtCtpWTBD6Eq0Ia0glRSNO0euUfhJCGkKbV-iUCaZqpeQK_fkafEh7b3bZWbwd52wmkyFuy8_Y7B5MdsHjMOAx2DlhGyDOI5TN-B6HfA-xIL_L7KJxPmWYsA_R9BH8wcXDHINPuNvjwsYbii2MY8LO48lZeINOBjMmePv4nqG7y4sfm8_V9e2nq83H68rWhOSKDQyk5VL0A4eu7S1w2_YlziANSMW4UJRB3bOuZZwTIdSgjDWkYbQ3pB74Gfpw8N3N3QRF73M0o95FN5m418E4_RTx7l5vw4PmSlAh2mLw7tEghl8zpKwnl5YoxkOYk6Z1TSVjlKjnqUKyRgrZLFR5oNoYUoowHC-iRC9N62PTemlaU66Xpovw_P88R9m_avlfBv2pQw</recordid><startdate>20131127</startdate><enddate>20131127</enddate><creator>Holloway, Benjamin B</creator><creator>Stornetta, Ruth L</creator><creator>Bochorishvili, Genrieta</creator><creator>Erisir, Alev</creator><creator>Viar, Kenneth E</creator><creator>Guyenet, Patrice G</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131127</creationdate><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><author>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - physiology</topic><topic>Channelrhodopsins</topic><topic>Dependovirus - genetics</topic><topic>Dopamine beta-Hydroxylase - genetics</topic><topic>Electrophysiological Phenomena - genetics</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Genetic Vectors</topic><topic>Glutamic Acid - physiology</topic><topic>In Vitro Techniques</topic><topic>Locus Coeruleus - chemistry</topic><topic>Locus Coeruleus - physiology</topic><topic>Medulla Oblongata - cytology</topic><topic>Medulla Oblongata - physiology</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Parasympathetic Nervous System - physiology</topic><topic>Photic Stimulation</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Synapses - physiology</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holloway, Benjamin B</creatorcontrib><creatorcontrib>Stornetta, Ruth L</creatorcontrib><creatorcontrib>Bochorishvili, Genrieta</creatorcontrib><creatorcontrib>Erisir, Alev</creatorcontrib><creatorcontrib>Viar, Kenneth E</creatorcontrib><creatorcontrib>Guyenet, Patrice G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holloway, Benjamin B</au><au>Stornetta, Ruth L</au><au>Bochorishvili, Genrieta</au><au>Erisir, Alev</au><au>Viar, Kenneth E</au><au>Guyenet, Patrice G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-27</date><risdate>2013</risdate><volume>33</volume><issue>48</issue><spage>18792</spage><epage>18805</epage><pages>18792-18805</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24285886</pmid><doi>10.1523/JNEUROSCI.2916-13.2013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2013-11, Vol.33 (48), p.18792-18805 |
issn | 0270-6474 1529-2401 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841449 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Brain Stem - cytology Brain Stem - physiology Channelrhodopsins Dependovirus - genetics Dopamine beta-Hydroxylase - genetics Electrophysiological Phenomena - genetics Electrophysiological Phenomena - physiology Excitatory Postsynaptic Potentials - physiology Genetic Vectors Glutamic Acid - physiology In Vitro Techniques Locus Coeruleus - chemistry Locus Coeruleus - physiology Medulla Oblongata - cytology Medulla Oblongata - physiology Mice Microscopy, Electron Microscopy, Fluorescence Neurons - physiology Optogenetics Parasympathetic Nervous System - physiology Photic Stimulation Sympathetic Nervous System - physiology Synapses - physiology Vesicular Glutamate Transport Protein 2 - metabolism |
title | Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monosynaptic%20glutamatergic%20activation%20of%20locus%20coeruleus%20and%20other%20lower%20brainstem%20noradrenergic%20neurons%20by%20the%20C1%20cells%20in%20mice&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Holloway,%20Benjamin%20B&rft.date=2013-11-27&rft.volume=33&rft.issue=48&rft.spage=18792&rft.epage=18805&rft.pages=18792-18805&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2916-13.2013&rft_dat=%3Cproquest_pubme%3E1462764678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462764678&rft_id=info:pmid/24285886&rfr_iscdi=true |