Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice

The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine relea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of neuroscience 2013-11, Vol.33 (48), p.18792-18805
Hauptverfasser: Holloway, Benjamin B, Stornetta, Ruth L, Bochorishvili, Genrieta, Erisir, Alev, Viar, Kenneth E, Guyenet, Patrice G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18805
container_issue 48
container_start_page 18792
container_title The Journal of neuroscience
container_volume 33
creator Holloway, Benjamin B
Stornetta, Ruth L
Bochorishvili, Genrieta
Erisir, Alev
Viar, Kenneth E
Guyenet, Patrice G
description The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.
doi_str_mv 10.1523/JNEUROSCI.2916-13.2013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462764678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</originalsourceid><addsrcrecordid>eNqFUctu1DAUtRAVHQq_UHnJJoNfcZwNEhq1UFRaCejacpybqVFiD7ZTNDs-HUdTRnTVzfW1zkP36CB0Tsma1oy__3Jzcfft9vvmas1aKivK14xQ_gKtCtpWTBD6Eq0Ia0glRSNO0euUfhJCGkKbV-iUCaZqpeQK_fkafEh7b3bZWbwd52wmkyFuy8_Y7B5MdsHjMOAx2DlhGyDOI5TN-B6HfA-xIL_L7KJxPmWYsA_R9BH8wcXDHINPuNvjwsYbii2MY8LO48lZeINOBjMmePv4nqG7y4sfm8_V9e2nq83H68rWhOSKDQyk5VL0A4eu7S1w2_YlziANSMW4UJRB3bOuZZwTIdSgjDWkYbQ3pB74Gfpw8N3N3QRF73M0o95FN5m418E4_RTx7l5vw4PmSlAh2mLw7tEghl8zpKwnl5YoxkOYk6Z1TSVjlKjnqUKyRgrZLFR5oNoYUoowHC-iRC9N62PTemlaU66Xpovw_P88R9m_avlfBv2pQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462764678</pqid></control><display><type>article</type><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</creator><creatorcontrib>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</creatorcontrib><description>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</description><identifier>ISSN: 0270-6474</identifier><identifier>ISSN: 1529-2401</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.2916-13.2013</identifier><identifier>PMID: 24285886</identifier><language>eng</language><publisher>United States: Society for Neuroscience</publisher><subject>Animals ; Brain Stem - cytology ; Brain Stem - physiology ; Channelrhodopsins ; Dependovirus - genetics ; Dopamine beta-Hydroxylase - genetics ; Electrophysiological Phenomena - genetics ; Electrophysiological Phenomena - physiology ; Excitatory Postsynaptic Potentials - physiology ; Genetic Vectors ; Glutamic Acid - physiology ; In Vitro Techniques ; Locus Coeruleus - chemistry ; Locus Coeruleus - physiology ; Medulla Oblongata - cytology ; Medulla Oblongata - physiology ; Mice ; Microscopy, Electron ; Microscopy, Fluorescence ; Neurons - physiology ; Optogenetics ; Parasympathetic Nervous System - physiology ; Photic Stimulation ; Sympathetic Nervous System - physiology ; Synapses - physiology ; Vesicular Glutamate Transport Protein 2 - metabolism</subject><ispartof>The Journal of neuroscience, 2013-11, Vol.33 (48), p.18792-18805</ispartof><rights>Copyright © 2013 the authors 0270-6474/13/3318792-14$15.00/0 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</citedby><cites>FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841449/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3841449/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24285886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holloway, Benjamin B</creatorcontrib><creatorcontrib>Stornetta, Ruth L</creatorcontrib><creatorcontrib>Bochorishvili, Genrieta</creatorcontrib><creatorcontrib>Erisir, Alev</creatorcontrib><creatorcontrib>Viar, Kenneth E</creatorcontrib><creatorcontrib>Guyenet, Patrice G</creatorcontrib><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</description><subject>Animals</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - physiology</subject><subject>Channelrhodopsins</subject><subject>Dependovirus - genetics</subject><subject>Dopamine beta-Hydroxylase - genetics</subject><subject>Electrophysiological Phenomena - genetics</subject><subject>Electrophysiological Phenomena - physiology</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Genetic Vectors</subject><subject>Glutamic Acid - physiology</subject><subject>In Vitro Techniques</subject><subject>Locus Coeruleus - chemistry</subject><subject>Locus Coeruleus - physiology</subject><subject>Medulla Oblongata - cytology</subject><subject>Medulla Oblongata - physiology</subject><subject>Mice</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Fluorescence</subject><subject>Neurons - physiology</subject><subject>Optogenetics</subject><subject>Parasympathetic Nervous System - physiology</subject><subject>Photic Stimulation</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Synapses - physiology</subject><subject>Vesicular Glutamate Transport Protein 2 - metabolism</subject><issn>0270-6474</issn><issn>1529-2401</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctu1DAUtRAVHQq_UHnJJoNfcZwNEhq1UFRaCejacpybqVFiD7ZTNDs-HUdTRnTVzfW1zkP36CB0Tsma1oy__3Jzcfft9vvmas1aKivK14xQ_gKtCtpWTBD6Eq0Ia0glRSNO0euUfhJCGkKbV-iUCaZqpeQK_fkafEh7b3bZWbwd52wmkyFuy8_Y7B5MdsHjMOAx2DlhGyDOI5TN-B6HfA-xIL_L7KJxPmWYsA_R9BH8wcXDHINPuNvjwsYbii2MY8LO48lZeINOBjMmePv4nqG7y4sfm8_V9e2nq83H68rWhOSKDQyk5VL0A4eu7S1w2_YlziANSMW4UJRB3bOuZZwTIdSgjDWkYbQ3pB74Gfpw8N3N3QRF73M0o95FN5m418E4_RTx7l5vw4PmSlAh2mLw7tEghl8zpKwnl5YoxkOYk6Z1TSVjlKjnqUKyRgrZLFR5oNoYUoowHC-iRC9N62PTemlaU66Xpovw_P88R9m_avlfBv2pQw</recordid><startdate>20131127</startdate><enddate>20131127</enddate><creator>Holloway, Benjamin B</creator><creator>Stornetta, Ruth L</creator><creator>Bochorishvili, Genrieta</creator><creator>Erisir, Alev</creator><creator>Viar, Kenneth E</creator><creator>Guyenet, Patrice G</creator><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope></search><sort><creationdate>20131127</creationdate><title>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</title><author>Holloway, Benjamin B ; Stornetta, Ruth L ; Bochorishvili, Genrieta ; Erisir, Alev ; Viar, Kenneth E ; Guyenet, Patrice G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-2f2e6c364df3eb9dce3c9d701f6ae68234812e5d2b92330448f8aca0721da05f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - physiology</topic><topic>Channelrhodopsins</topic><topic>Dependovirus - genetics</topic><topic>Dopamine beta-Hydroxylase - genetics</topic><topic>Electrophysiological Phenomena - genetics</topic><topic>Electrophysiological Phenomena - physiology</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Genetic Vectors</topic><topic>Glutamic Acid - physiology</topic><topic>In Vitro Techniques</topic><topic>Locus Coeruleus - chemistry</topic><topic>Locus Coeruleus - physiology</topic><topic>Medulla Oblongata - cytology</topic><topic>Medulla Oblongata - physiology</topic><topic>Mice</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Fluorescence</topic><topic>Neurons - physiology</topic><topic>Optogenetics</topic><topic>Parasympathetic Nervous System - physiology</topic><topic>Photic Stimulation</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Synapses - physiology</topic><topic>Vesicular Glutamate Transport Protein 2 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holloway, Benjamin B</creatorcontrib><creatorcontrib>Stornetta, Ruth L</creatorcontrib><creatorcontrib>Bochorishvili, Genrieta</creatorcontrib><creatorcontrib>Erisir, Alev</creatorcontrib><creatorcontrib>Viar, Kenneth E</creatorcontrib><creatorcontrib>Guyenet, Patrice G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holloway, Benjamin B</au><au>Stornetta, Ruth L</au><au>Bochorishvili, Genrieta</au><au>Erisir, Alev</au><au>Viar, Kenneth E</au><au>Guyenet, Patrice G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2013-11-27</date><risdate>2013</risdate><volume>33</volume><issue>48</issue><spage>18792</spage><epage>18805</epage><pages>18792-18805</pages><issn>0270-6474</issn><issn>1529-2401</issn><eissn>1529-2401</eissn><abstract>The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.</abstract><cop>United States</cop><pub>Society for Neuroscience</pub><pmid>24285886</pmid><doi>10.1523/JNEUROSCI.2916-13.2013</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2013-11, Vol.33 (48), p.18792-18805
issn 0270-6474
1529-2401
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3841449
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Brain Stem - cytology
Brain Stem - physiology
Channelrhodopsins
Dependovirus - genetics
Dopamine beta-Hydroxylase - genetics
Electrophysiological Phenomena - genetics
Electrophysiological Phenomena - physiology
Excitatory Postsynaptic Potentials - physiology
Genetic Vectors
Glutamic Acid - physiology
In Vitro Techniques
Locus Coeruleus - chemistry
Locus Coeruleus - physiology
Medulla Oblongata - cytology
Medulla Oblongata - physiology
Mice
Microscopy, Electron
Microscopy, Fluorescence
Neurons - physiology
Optogenetics
Parasympathetic Nervous System - physiology
Photic Stimulation
Sympathetic Nervous System - physiology
Synapses - physiology
Vesicular Glutamate Transport Protein 2 - metabolism
title Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A07%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monosynaptic%20glutamatergic%20activation%20of%20locus%20coeruleus%20and%20other%20lower%20brainstem%20noradrenergic%20neurons%20by%20the%20C1%20cells%20in%20mice&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Holloway,%20Benjamin%20B&rft.date=2013-11-27&rft.volume=33&rft.issue=48&rft.spage=18792&rft.epage=18805&rft.pages=18792-18805&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.2916-13.2013&rft_dat=%3Cproquest_pubme%3E1462764678%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462764678&rft_id=info:pmid/24285886&rfr_iscdi=true