MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development

Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2013-12, Vol.384 (1), p.114-127
Hauptverfasser: Wood, William M., Etemad, Shervin, Yamamoto, Masakazu, Goldhamer, David J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 114
container_title Developmental biology
container_volume 384
creator Wood, William M.
Etemad, Shervin
Yamamoto, Masakazu
Goldhamer, David J.
description Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development. •Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.
doi_str_mv 10.1016/j.ydbio.2013.09.012
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160613004867</els_id><sourcerecordid>1803089987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhi0EYkvhFyBBjlwS_BEn9gEktHxKizjAStyMP8bFJYmzdlrRf49LlxVc2NPI4-cdz_gdhB4T3BBMuufb5uBMiA3FhDVYNpjQO2hFsOQ179qvd9EKl1RNOtydoQc5bzHGTAh2H53RFnNOerZC3z4e4usafs4Jcg7TpppT3MAUlphypRNUJQ3TEvRQ-Ziq_AMGWMphPBwxyKFQk6uyXmAYwgKVLbFysIchzmNRPkT3vB4yPLqOa3T59s2X8_f1xad3H85fXdSWt3Kptfcd1ZYa4YjjuPcSU2uFIOB7T0UrnGet6TqOjdDeSE-csEQbLgznxgBbo5enuvPOjOBseTrpQc0pjDodVNRB_Xszhe9qE_eKCSZk-cI1enZdIMWrHeRFjSEfp9ETxF1WRGCGhZSivx3ltG0x7TtxO9q2kgpKBC8oO6E2xZwT-JvmCVZHx9VW_XZcHR1XWKpib1E9-XvuG80fiwvw9AR4HZXepJDV5edSoSvrIJgsO7FGL04EFH_2AZLKNsBkwYUEdlEuhv-28Au_hMoe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449282185</pqid></control><display><type>article</type><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</creator><creatorcontrib>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</creatorcontrib><description>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development. •Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2013.09.012</identifier><identifier>PMID: 24055173</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Differentiation ; Diphtheria toxin ; DTA ; Embryo, Mammalian - metabolism ; fluorescent antibody technique ; Lineage ablation ; Mice ; Mouse embryo ; muscle development ; Muscle, Skeletal - cytology ; Muscle, Skeletal - embryology ; Muscle, Skeletal - metabolism ; muscles ; Myf-5 ; Myoblasts ; MyoD ; MyoD Protein - genetics ; MyoD Protein - metabolism ; Myogenesis ; myosin heavy chains ; population ; Progenitors ; protein synthesis ; Satellite cells ; Satellite Cells, Skeletal Muscle - metabolism ; Skeletal muscle ; Stem cells ; Stem Cells - metabolism ; transcription factors</subject><ispartof>Developmental biology, 2013-12, Vol.384 (1), p.114-127</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</citedby><cites>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2013.09.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24055173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, William M.</creatorcontrib><creatorcontrib>Etemad, Shervin</creatorcontrib><creatorcontrib>Yamamoto, Masakazu</creatorcontrib><creatorcontrib>Goldhamer, David J.</creatorcontrib><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development. •Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Diphtheria toxin</subject><subject>DTA</subject><subject>Embryo, Mammalian - metabolism</subject><subject>fluorescent antibody technique</subject><subject>Lineage ablation</subject><subject>Mice</subject><subject>Mouse embryo</subject><subject>muscle development</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - embryology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>muscles</subject><subject>Myf-5</subject><subject>Myoblasts</subject><subject>MyoD</subject><subject>MyoD Protein - genetics</subject><subject>MyoD Protein - metabolism</subject><subject>Myogenesis</subject><subject>myosin heavy chains</subject><subject>population</subject><subject>Progenitors</subject><subject>protein synthesis</subject><subject>Satellite cells</subject><subject>Satellite Cells, Skeletal Muscle - metabolism</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>transcription factors</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhi0EYkvhFyBBjlwS_BEn9gEktHxKizjAStyMP8bFJYmzdlrRf49LlxVc2NPI4-cdz_gdhB4T3BBMuufb5uBMiA3FhDVYNpjQO2hFsOQ179qvd9EKl1RNOtydoQc5bzHGTAh2H53RFnNOerZC3z4e4usafs4Jcg7TpppT3MAUlphypRNUJQ3TEvRQ-Ziq_AMGWMphPBwxyKFQk6uyXmAYwgKVLbFysIchzmNRPkT3vB4yPLqOa3T59s2X8_f1xad3H85fXdSWt3Kptfcd1ZYa4YjjuPcSU2uFIOB7T0UrnGet6TqOjdDeSE-csEQbLgznxgBbo5enuvPOjOBseTrpQc0pjDodVNRB_Xszhe9qE_eKCSZk-cI1enZdIMWrHeRFjSEfp9ETxF1WRGCGhZSivx3ltG0x7TtxO9q2kgpKBC8oO6E2xZwT-JvmCVZHx9VW_XZcHR1XWKpib1E9-XvuG80fiwvw9AR4HZXepJDV5edSoSvrIJgsO7FGL04EFH_2AZLKNsBkwYUEdlEuhv-28Au_hMoe</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wood, William M.</creator><creator>Etemad, Shervin</creator><creator>Yamamoto, Masakazu</creator><creator>Goldhamer, David J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><author>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Diphtheria toxin</topic><topic>DTA</topic><topic>Embryo, Mammalian - metabolism</topic><topic>fluorescent antibody technique</topic><topic>Lineage ablation</topic><topic>Mice</topic><topic>Mouse embryo</topic><topic>muscle development</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - embryology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>muscles</topic><topic>Myf-5</topic><topic>Myoblasts</topic><topic>MyoD</topic><topic>MyoD Protein - genetics</topic><topic>MyoD Protein - metabolism</topic><topic>Myogenesis</topic><topic>myosin heavy chains</topic><topic>population</topic><topic>Progenitors</topic><topic>protein synthesis</topic><topic>Satellite cells</topic><topic>Satellite Cells, Skeletal Muscle - metabolism</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, William M.</creatorcontrib><creatorcontrib>Etemad, Shervin</creatorcontrib><creatorcontrib>Yamamoto, Masakazu</creatorcontrib><creatorcontrib>Goldhamer, David J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, William M.</au><au>Etemad, Shervin</au><au>Yamamoto, Masakazu</au><au>Goldhamer, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>384</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development. •Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24055173</pmid><doi>10.1016/j.ydbio.2013.09.012</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2013-12, Vol.384 (1), p.114-127
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838901
source MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Cell Differentiation
Diphtheria toxin
DTA
Embryo, Mammalian - metabolism
fluorescent antibody technique
Lineage ablation
Mice
Mouse embryo
muscle development
Muscle, Skeletal - cytology
Muscle, Skeletal - embryology
Muscle, Skeletal - metabolism
muscles
Myf-5
Myoblasts
MyoD
MyoD Protein - genetics
MyoD Protein - metabolism
Myogenesis
myosin heavy chains
population
Progenitors
protein synthesis
Satellite cells
Satellite Cells, Skeletal Muscle - metabolism
Skeletal muscle
Stem cells
Stem Cells - metabolism
transcription factors
title MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MyoD-expressing%20progenitors%20are%20essential%20for%20skeletal%20myogenesis%20and%20satellite%20cell%20development&rft.jtitle=Developmental%20biology&rft.au=Wood,%20William%20M.&rft.date=2013-12-01&rft.volume=384&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2013.09.012&rft_dat=%3Cproquest_pubme%3E1803089987%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449282185&rft_id=info:pmid/24055173&rft_els_id=S0012160613004867&rfr_iscdi=true