MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development
Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previo...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2013-12, Vol.384 (1), p.114-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 114 |
container_title | Developmental biology |
container_volume | 384 |
creator | Wood, William M. Etemad, Shervin Yamamoto, Masakazu Goldhamer, David J. |
description | Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development.
•Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage. |
doi_str_mv | 10.1016/j.ydbio.2013.09.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160613004867</els_id><sourcerecordid>1803089987</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</originalsourceid><addsrcrecordid>eNqFkk2P0zAQhi0EYkvhFyBBjlwS_BEn9gEktHxKizjAStyMP8bFJYmzdlrRf49LlxVc2NPI4-cdz_gdhB4T3BBMuufb5uBMiA3FhDVYNpjQO2hFsOQ179qvd9EKl1RNOtydoQc5bzHGTAh2H53RFnNOerZC3z4e4usafs4Jcg7TpppT3MAUlphypRNUJQ3TEvRQ-Ziq_AMGWMphPBwxyKFQk6uyXmAYwgKVLbFysIchzmNRPkT3vB4yPLqOa3T59s2X8_f1xad3H85fXdSWt3Kptfcd1ZYa4YjjuPcSU2uFIOB7T0UrnGet6TqOjdDeSE-csEQbLgznxgBbo5enuvPOjOBseTrpQc0pjDodVNRB_Xszhe9qE_eKCSZk-cI1enZdIMWrHeRFjSEfp9ETxF1WRGCGhZSivx3ltG0x7TtxO9q2kgpKBC8oO6E2xZwT-JvmCVZHx9VW_XZcHR1XWKpib1E9-XvuG80fiwvw9AR4HZXepJDV5edSoSvrIJgsO7FGL04EFH_2AZLKNsBkwYUEdlEuhv-28Au_hMoe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449282185</pqid></control><display><type>article</type><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</creator><creatorcontrib>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</creatorcontrib><description>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development.
•Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2013.09.012</identifier><identifier>PMID: 24055173</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cell Differentiation ; Diphtheria toxin ; DTA ; Embryo, Mammalian - metabolism ; fluorescent antibody technique ; Lineage ablation ; Mice ; Mouse embryo ; muscle development ; Muscle, Skeletal - cytology ; Muscle, Skeletal - embryology ; Muscle, Skeletal - metabolism ; muscles ; Myf-5 ; Myoblasts ; MyoD ; MyoD Protein - genetics ; MyoD Protein - metabolism ; Myogenesis ; myosin heavy chains ; population ; Progenitors ; protein synthesis ; Satellite cells ; Satellite Cells, Skeletal Muscle - metabolism ; Skeletal muscle ; Stem cells ; Stem Cells - metabolism ; transcription factors</subject><ispartof>Developmental biology, 2013-12, Vol.384 (1), p.114-127</ispartof><rights>2013 Elsevier Inc.</rights><rights>2013 Published by Elsevier Inc.</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</citedby><cites>FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2013.09.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24055173$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wood, William M.</creatorcontrib><creatorcontrib>Etemad, Shervin</creatorcontrib><creatorcontrib>Yamamoto, Masakazu</creatorcontrib><creatorcontrib>Goldhamer, David J.</creatorcontrib><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development.
•Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</description><subject>Animals</subject><subject>Cell Differentiation</subject><subject>Diphtheria toxin</subject><subject>DTA</subject><subject>Embryo, Mammalian - metabolism</subject><subject>fluorescent antibody technique</subject><subject>Lineage ablation</subject><subject>Mice</subject><subject>Mouse embryo</subject><subject>muscle development</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - embryology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>muscles</subject><subject>Myf-5</subject><subject>Myoblasts</subject><subject>MyoD</subject><subject>MyoD Protein - genetics</subject><subject>MyoD Protein - metabolism</subject><subject>Myogenesis</subject><subject>myosin heavy chains</subject><subject>population</subject><subject>Progenitors</subject><subject>protein synthesis</subject><subject>Satellite cells</subject><subject>Satellite Cells, Skeletal Muscle - metabolism</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>transcription factors</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk2P0zAQhi0EYkvhFyBBjlwS_BEn9gEktHxKizjAStyMP8bFJYmzdlrRf49LlxVc2NPI4-cdz_gdhB4T3BBMuufb5uBMiA3FhDVYNpjQO2hFsOQ179qvd9EKl1RNOtydoQc5bzHGTAh2H53RFnNOerZC3z4e4usafs4Jcg7TpppT3MAUlphypRNUJQ3TEvRQ-Ziq_AMGWMphPBwxyKFQk6uyXmAYwgKVLbFysIchzmNRPkT3vB4yPLqOa3T59s2X8_f1xad3H85fXdSWt3Kptfcd1ZYa4YjjuPcSU2uFIOB7T0UrnGet6TqOjdDeSE-csEQbLgznxgBbo5enuvPOjOBseTrpQc0pjDodVNRB_Xszhe9qE_eKCSZk-cI1enZdIMWrHeRFjSEfp9ETxF1WRGCGhZSivx3ltG0x7TtxO9q2kgpKBC8oO6E2xZwT-JvmCVZHx9VW_XZcHR1XWKpib1E9-XvuG80fiwvw9AR4HZXepJDV5edSoSvrIJgsO7FGL04EFH_2AZLKNsBkwYUEdlEuhv-28Au_hMoe</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Wood, William M.</creator><creator>Etemad, Shervin</creator><creator>Yamamoto, Masakazu</creator><creator>Goldhamer, David J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QP</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</title><author>Wood, William M. ; Etemad, Shervin ; Yamamoto, Masakazu ; Goldhamer, David J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-aff62ac2b8d1d507f902cc881ef7f2848df34b6650b8afb9f1d8c1ab58b55bbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Cell Differentiation</topic><topic>Diphtheria toxin</topic><topic>DTA</topic><topic>Embryo, Mammalian - metabolism</topic><topic>fluorescent antibody technique</topic><topic>Lineage ablation</topic><topic>Mice</topic><topic>Mouse embryo</topic><topic>muscle development</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - embryology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>muscles</topic><topic>Myf-5</topic><topic>Myoblasts</topic><topic>MyoD</topic><topic>MyoD Protein - genetics</topic><topic>MyoD Protein - metabolism</topic><topic>Myogenesis</topic><topic>myosin heavy chains</topic><topic>population</topic><topic>Progenitors</topic><topic>protein synthesis</topic><topic>Satellite cells</topic><topic>Satellite Cells, Skeletal Muscle - metabolism</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wood, William M.</creatorcontrib><creatorcontrib>Etemad, Shervin</creatorcontrib><creatorcontrib>Yamamoto, Masakazu</creatorcontrib><creatorcontrib>Goldhamer, David J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wood, William M.</au><au>Etemad, Shervin</au><au>Yamamoto, Masakazu</au><au>Goldhamer, David J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>384</volume><issue>1</issue><spage>114</spage><epage>127</epage><pages>114-127</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>Skeletal myogenesis in the embryo is regulated by the coordinated expression of the MyoD family of muscle regulatory factors (MRFs). MyoD and Myf-5, which are the primary muscle lineage-determining factors, function in a partially redundant manner to establish muscle progenitor cell identity. Previous diphtheria toxin (DTA)-mediated ablation studies showed that MyoD+ progenitors rescue myogenesis in embryos in which Myf-5-expressing cells were targeted for ablation, raising the possibility that the regulative behavior of distinct, MRF-expressing populations explains the functional compensatory activities of these MRFs. Using MyoDiCre mice, we show that DTA-mediated ablation of MyoD-expressing cells results in the cessation of myogenesis by embryonic day 12.5 (E12.5), as assayed by myosin heavy chain (MyHC) and Myogenin staining. Importantly, MyoDiCre/+;R26DTA/+ embryos exhibited a concomitant loss of Myf-5+ progenitors, indicating that the vast majority of Myf-5+ progenitors express MyoD, a conclusion consistent with immunofluorescence analysis of Myf-5 protein expression in MyoDiCre lineage-labeled embryos. Surprisingly, staining for the paired box transcription factor, Pax7, which functions genetically upstream of MyoD in the trunk and is a marker for fetal myoblasts and satellite cell progenitors, was also lost by E12.5. Specific ablation of differentiating skeletal muscle in ACTA1Cre;R26DTA/+ embryos resulted in comparatively minor effects on MyoD+, Myf-5+ and Pax7+ progenitors, indicating that cell non-autonomous effects are unlikely to explain the rapid loss of myogenic progenitors in MyoDiCre/+;R26DTA/+ embryos. We conclude that the vast majority of myogenic cells transit through a MyoD+ state, and that MyoD+ progenitors are essential for myogenesis and stem cell development.
•Ablation of MyoD+ progenitor cells in the mouse abrogates skeletal myogenesis.•All Myf-5+ and Pax7+ progenitors are lost in MyoD lineage ablated embryos.•Essentially all skeletal muscle progenitors express MyoD.•Satellite cell development is dependent on the MyoD lineage.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24055173</pmid><doi>10.1016/j.ydbio.2013.09.012</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2013-12, Vol.384 (1), p.114-127 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838901 |
source | MEDLINE; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Cell Differentiation Diphtheria toxin DTA Embryo, Mammalian - metabolism fluorescent antibody technique Lineage ablation Mice Mouse embryo muscle development Muscle, Skeletal - cytology Muscle, Skeletal - embryology Muscle, Skeletal - metabolism muscles Myf-5 Myoblasts MyoD MyoD Protein - genetics MyoD Protein - metabolism Myogenesis myosin heavy chains population Progenitors protein synthesis Satellite cells Satellite Cells, Skeletal Muscle - metabolism Skeletal muscle Stem cells Stem Cells - metabolism transcription factors |
title | MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A16%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MyoD-expressing%20progenitors%20are%20essential%20for%20skeletal%20myogenesis%20and%20satellite%20cell%20development&rft.jtitle=Developmental%20biology&rft.au=Wood,%20William%20M.&rft.date=2013-12-01&rft.volume=384&rft.issue=1&rft.spage=114&rft.epage=127&rft.pages=114-127&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2013.09.012&rft_dat=%3Cproquest_pubme%3E1803089987%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449282185&rft_id=info:pmid/24055173&rft_els_id=S0012160613004867&rfr_iscdi=true |