Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase

Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2013-11, Vol.105 (10), p.2385-2391
Hauptverfasser: Watanabe, Rikiya, Hayashi, Kumiko, Ueno, Hiroshi, Noji, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2391
container_issue 10
container_start_page 2385
container_title Biophysical journal
container_volume 105
creator Watanabe, Rikiya
Hayashi, Kumiko
Ueno, Hiroshi
Noji, Hiroyuki
description Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement.
doi_str_mv 10.1016/j.bpj.2013.09.050
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349513011272</els_id><sourcerecordid>1461871960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4560-7f192d9590c91ff11688dc076d336dd8e66b5522ea58fd111c6716ac2f0231be3</originalsourceid><addsrcrecordid>eNp9kcFuEzEURS0EoiHwAWxglmxmeM8ee2whIVVRQ5EqgaBdW47taR1NxsGeidS_xyFtBRu88cLnHV_dR8hbhAYBxcdts9lvGwrIGlANcHhGFshbWgNI8ZwsAEDUrFX8jLzKeQuAlAO-JGe0pUIihwVRKzOZ4T6HXF-Md2a0fufHqToEU_2Ik0n31XqY7TSbKcSxin21xvr8-rvJ_jV50Zsh-zcP95LcrC-uV5f11bcvX1fnV7VtuYC661FRp7gCq7DvEYWUzkInHGPCOemF2HBOqTdc9g4RrehQGEt7oAw3ni3J55N3P2923tkSL5lB71PYlXg6mqD_fRnDnb6NB80kkx2HIvjwIEjx1-zzpHchWz8MZvRxzhpbgbJDJY4onlCbYs7J90_fIOhj5XqrS-X6WLkGpeGP_t3f-Z4mHjsuwPsT0JuozW0KWd_8LAZe9oHseJbk04nwpcdD8ElnG3zZhQvJ20m7GP4T4DcOdpmr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461871960</pqid></control><display><type>article</type><title>Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Watanabe, Rikiya ; Hayashi, Kumiko ; Ueno, Hiroshi ; Noji, Hiroyuki</creator><creatorcontrib>Watanabe, Rikiya ; Hayashi, Kumiko ; Ueno, Hiroshi ; Noji, Hiroyuki</creatorcontrib><description>Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2013.09.050</identifier><identifier>PMID: 24268150</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Biocatalysis ; Biomechanical Phenomena ; drag coefficient ; enzymes ; Friction ; Hydrolysis ; Kinetics ; Models, Biological ; Molecular Machines, Motors and Nanoscale Biophysics ; Molecular Probes - metabolism ; Phosphates - metabolism ; protein conformation ; Proton-Translocating ATPases - metabolism ; Rotation ; Viscosity</subject><ispartof>Biophysical journal, 2013-11, Vol.105 (10), p.2385-2391</ispartof><rights>2013 Biophysical Society</rights><rights>Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.</rights><rights>2013 by the Biophysical Society. 2013 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4560-7f192d9590c91ff11688dc076d336dd8e66b5522ea58fd111c6716ac2f0231be3</citedby><cites>FETCH-LOGICAL-c4560-7f192d9590c91ff11688dc076d336dd8e66b5522ea58fd111c6716ac2f0231be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838750/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349513011272$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24268150$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Rikiya</creatorcontrib><creatorcontrib>Hayashi, Kumiko</creatorcontrib><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Noji, Hiroyuki</creatorcontrib><title>Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement.</description><subject>adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Biocatalysis</subject><subject>Biomechanical Phenomena</subject><subject>drag coefficient</subject><subject>enzymes</subject><subject>Friction</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Molecular Machines, Motors and Nanoscale Biophysics</subject><subject>Molecular Probes - metabolism</subject><subject>Phosphates - metabolism</subject><subject>protein conformation</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Rotation</subject><subject>Viscosity</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFuEzEURS0EoiHwAWxglmxmeM8ee2whIVVRQ5EqgaBdW47taR1NxsGeidS_xyFtBRu88cLnHV_dR8hbhAYBxcdts9lvGwrIGlANcHhGFshbWgNI8ZwsAEDUrFX8jLzKeQuAlAO-JGe0pUIihwVRKzOZ4T6HXF-Md2a0fufHqToEU_2Ik0n31XqY7TSbKcSxin21xvr8-rvJ_jV50Zsh-zcP95LcrC-uV5f11bcvX1fnV7VtuYC661FRp7gCq7DvEYWUzkInHGPCOemF2HBOqTdc9g4RrehQGEt7oAw3ni3J55N3P2923tkSL5lB71PYlXg6mqD_fRnDnb6NB80kkx2HIvjwIEjx1-zzpHchWz8MZvRxzhpbgbJDJY4onlCbYs7J90_fIOhj5XqrS-X6WLkGpeGP_t3f-Z4mHjsuwPsT0JuozW0KWd_8LAZe9oHseJbk04nwpcdD8ElnG3zZhQvJ20m7GP4T4DcOdpmr</recordid><startdate>20131119</startdate><enddate>20131119</enddate><creator>Watanabe, Rikiya</creator><creator>Hayashi, Kumiko</creator><creator>Ueno, Hiroshi</creator><creator>Noji, Hiroyuki</creator><general>Elsevier Inc</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131119</creationdate><title>Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase</title><author>Watanabe, Rikiya ; Hayashi, Kumiko ; Ueno, Hiroshi ; Noji, Hiroyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4560-7f192d9590c91ff11688dc076d336dd8e66b5522ea58fd111c6716ac2f0231be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Biocatalysis</topic><topic>Biomechanical Phenomena</topic><topic>drag coefficient</topic><topic>enzymes</topic><topic>Friction</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Molecular Machines, Motors and Nanoscale Biophysics</topic><topic>Molecular Probes - metabolism</topic><topic>Phosphates - metabolism</topic><topic>protein conformation</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Rotation</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Rikiya</creatorcontrib><creatorcontrib>Hayashi, Kumiko</creatorcontrib><creatorcontrib>Ueno, Hiroshi</creatorcontrib><creatorcontrib>Noji, Hiroyuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Rikiya</au><au>Hayashi, Kumiko</au><au>Ueno, Hiroshi</au><au>Noji, Hiroyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2013-11-19</date><risdate>2013</risdate><volume>105</volume><issue>10</issue><spage>2385</spage><epage>2391</epage><pages>2385-2391</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24268150</pmid><doi>10.1016/j.bpj.2013.09.050</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2013-11, Vol.105 (10), p.2385-2391
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3838750
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects adenosine triphosphate
Adenosine Triphosphate - metabolism
Biocatalysis
Biomechanical Phenomena
drag coefficient
enzymes
Friction
Hydrolysis
Kinetics
Models, Biological
Molecular Machines, Motors and Nanoscale Biophysics
Molecular Probes - metabolism
Phosphates - metabolism
protein conformation
Proton-Translocating ATPases - metabolism
Rotation
Viscosity
title Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalysis-Enhancement%20via%20Rotary%20Fluctuation%20of%20F1-ATPase&rft.jtitle=Biophysical%20journal&rft.au=Watanabe,%20Rikiya&rft.date=2013-11-19&rft.volume=105&rft.issue=10&rft.spage=2385&rft.epage=2391&rft.pages=2385-2391&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2013.09.050&rft_dat=%3Cproquest_pubme%3E1461871960%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461871960&rft_id=info:pmid/24268150&rft_els_id=S0006349513011272&rfr_iscdi=true