Thermal Stability of DNA Functionalized Gold Nanoparticles

Therapeutic uses of DNA functionalized gold nanoparticles (DNA-AuNPs) have shown great potential and exciting opportunities for disease diagnostics and treatment. Maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under thermally stressed conditions is one of the crit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2013-11, Vol.24 (11), p.1790-1797
Hauptverfasser: Li, Feng, Zhang, Hongquan, Dever, Brittany, Li, Xing-Fang, Le, X. Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1797
container_issue 11
container_start_page 1790
container_title Bioconjugate chemistry
container_volume 24
creator Li, Feng
Zhang, Hongquan
Dever, Brittany
Li, Xing-Fang
Le, X. Chris
description Therapeutic uses of DNA functionalized gold nanoparticles (DNA-AuNPs) have shown great potential and exciting opportunities for disease diagnostics and treatment. Maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under thermally stressed conditions is one of the critical aspects for any of the practical applications. We systematically studied the thermal stability of DNA-AuNPs as affected by organosulfur anchor groups and packing densities. Using a fluorescence assay to determine the kinetics of releasing DNA molecules from DNA-AuNPs, we observed an opposite trend between the temperature-induced and chemical-induced release of DNA from DNA-AuNPs when comparing the DNA-AuNPs that were constructed with different anchor groups. Specifically, the bidentate Au–S bond formed with cyclic disulfide was thermally less stable than those formed with thiol or acyclic disulfide. However, the same bidentate Au–S bond was chemically more stable under the treatment of competing thiols (mercaptohexanol or dithiothreitol). DNA packing density on AuNPs influenced the thermal stability of DNA-AuNPs at 37 °C, but this effect was minimum as temperature increased to 85 °C. With the improved understanding from these results, we were able to design a strategy to enhance the stability of DNA-AuNPs by conjugating double-stranded DNA to AuNPs through multiple thiol anchors.
doi_str_mv 10.1021/bc300687z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3836601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1496885283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a532t-cfcddfe7f05ba56756f3d6b3ca6576fe0a92cfcd61d42d4f73b8f4c705c199073</originalsourceid><addsrcrecordid>eNplkVtLwzAYhoMobh4u_ANSEEEvqjk0aeqFMKabguiF8zqkaaKRrJlJK2y_3o7pmHr1Bb4nT17yAnCE4AWCGF2WikDIeL7YAn1EMUwzjvB2d4YZSRGHuAf2YnyHEBaI413Qw1l3D1PeB1eTNx2m0iXPjSyts8088Sa5eRwko7ZWjfW1dHahq2TsXZU8ytrPZGiscjoegB0jXdSH33MfvIxuJ8O79OFpfD8cPKSSEtykyqiqMjo3kJaSspwyQypWEiUZzZnRUBZ4yTBUZbjKTE5KbjKVQ6pQUcCc7IPrlXfWllNdKV03QToxC3Yqw1x4acXvTW3fxKv_FIQTxiDqBGffguA_Wh0bMbVRaedkrX0bBcoKxjnFnHToyR_03beh-4MlxTDnmGRL4fmKUsHHGLRZh0FQLBsR60Y69ngz_Zr8qaADTleAVHHjtX-iL79rkkk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462882341</pqid></control><display><type>article</type><title>Thermal Stability of DNA Functionalized Gold Nanoparticles</title><source>MEDLINE</source><source>American Chemical Society Publications</source><creator>Li, Feng ; Zhang, Hongquan ; Dever, Brittany ; Li, Xing-Fang ; Le, X. Chris</creator><creatorcontrib>Li, Feng ; Zhang, Hongquan ; Dever, Brittany ; Li, Xing-Fang ; Le, X. Chris</creatorcontrib><description>Therapeutic uses of DNA functionalized gold nanoparticles (DNA-AuNPs) have shown great potential and exciting opportunities for disease diagnostics and treatment. Maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under thermally stressed conditions is one of the critical aspects for any of the practical applications. We systematically studied the thermal stability of DNA-AuNPs as affected by organosulfur anchor groups and packing densities. Using a fluorescence assay to determine the kinetics of releasing DNA molecules from DNA-AuNPs, we observed an opposite trend between the temperature-induced and chemical-induced release of DNA from DNA-AuNPs when comparing the DNA-AuNPs that were constructed with different anchor groups. Specifically, the bidentate Au–S bond formed with cyclic disulfide was thermally less stable than those formed with thiol or acyclic disulfide. However, the same bidentate Au–S bond was chemically more stable under the treatment of competing thiols (mercaptohexanol or dithiothreitol). DNA packing density on AuNPs influenced the thermal stability of DNA-AuNPs at 37 °C, but this effect was minimum as temperature increased to 85 °C. With the improved understanding from these results, we were able to design a strategy to enhance the stability of DNA-AuNPs by conjugating double-stranded DNA to AuNPs through multiple thiol anchors.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/bc300687z</identifier><identifier>PMID: 24102258</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Deoxyribonucleic acid ; Disulfides - chemistry ; DNA ; DNA - chemistry ; Fluorescence ; Gold - chemistry ; Metal Nanoparticles - chemistry ; Molecules ; Nanoparticles ; Sulfhydryl Compounds - chemistry ; Temperature ; Temperature effects</subject><ispartof>Bioconjugate chemistry, 2013-11, Vol.24 (11), p.1790-1797</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>Copyright American Chemical Society Nov 20, 2013</rights><rights>Copyright © 2013 American Chemical Society 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a532t-cfcddfe7f05ba56756f3d6b3ca6576fe0a92cfcd61d42d4f73b8f4c705c199073</citedby><cites>FETCH-LOGICAL-a532t-cfcddfe7f05ba56756f3d6b3ca6576fe0a92cfcd61d42d4f73b8f4c705c199073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bc300687z$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bc300687z$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24102258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhang, Hongquan</creatorcontrib><creatorcontrib>Dever, Brittany</creatorcontrib><creatorcontrib>Li, Xing-Fang</creatorcontrib><creatorcontrib>Le, X. Chris</creatorcontrib><title>Thermal Stability of DNA Functionalized Gold Nanoparticles</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Therapeutic uses of DNA functionalized gold nanoparticles (DNA-AuNPs) have shown great potential and exciting opportunities for disease diagnostics and treatment. Maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under thermally stressed conditions is one of the critical aspects for any of the practical applications. We systematically studied the thermal stability of DNA-AuNPs as affected by organosulfur anchor groups and packing densities. Using a fluorescence assay to determine the kinetics of releasing DNA molecules from DNA-AuNPs, we observed an opposite trend between the temperature-induced and chemical-induced release of DNA from DNA-AuNPs when comparing the DNA-AuNPs that were constructed with different anchor groups. Specifically, the bidentate Au–S bond formed with cyclic disulfide was thermally less stable than those formed with thiol or acyclic disulfide. However, the same bidentate Au–S bond was chemically more stable under the treatment of competing thiols (mercaptohexanol or dithiothreitol). DNA packing density on AuNPs influenced the thermal stability of DNA-AuNPs at 37 °C, but this effect was minimum as temperature increased to 85 °C. With the improved understanding from these results, we were able to design a strategy to enhance the stability of DNA-AuNPs by conjugating double-stranded DNA to AuNPs through multiple thiol anchors.</description><subject>Deoxyribonucleic acid</subject><subject>Disulfides - chemistry</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Fluorescence</subject><subject>Gold - chemistry</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecules</subject><subject>Nanoparticles</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Temperature</subject><subject>Temperature effects</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><sourceid>EIF</sourceid><recordid>eNplkVtLwzAYhoMobh4u_ANSEEEvqjk0aeqFMKabguiF8zqkaaKRrJlJK2y_3o7pmHr1Bb4nT17yAnCE4AWCGF2WikDIeL7YAn1EMUwzjvB2d4YZSRGHuAf2YnyHEBaI413Qw1l3D1PeB1eTNx2m0iXPjSyts8088Sa5eRwko7ZWjfW1dHahq2TsXZU8ytrPZGiscjoegB0jXdSH33MfvIxuJ8O79OFpfD8cPKSSEtykyqiqMjo3kJaSspwyQypWEiUZzZnRUBZ4yTBUZbjKTE5KbjKVQ6pQUcCc7IPrlXfWllNdKV03QToxC3Yqw1x4acXvTW3fxKv_FIQTxiDqBGffguA_Wh0bMbVRaedkrX0bBcoKxjnFnHToyR_03beh-4MlxTDnmGRL4fmKUsHHGLRZh0FQLBsR60Y69ngz_Zr8qaADTleAVHHjtX-iL79rkkk</recordid><startdate>20131120</startdate><enddate>20131120</enddate><creator>Li, Feng</creator><creator>Zhang, Hongquan</creator><creator>Dever, Brittany</creator><creator>Li, Xing-Fang</creator><creator>Le, X. Chris</creator><general>American Chemical Society</general><scope>N~.</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131120</creationdate><title>Thermal Stability of DNA Functionalized Gold Nanoparticles</title><author>Li, Feng ; Zhang, Hongquan ; Dever, Brittany ; Li, Xing-Fang ; Le, X. Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a532t-cfcddfe7f05ba56756f3d6b3ca6576fe0a92cfcd61d42d4f73b8f4c705c199073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Deoxyribonucleic acid</topic><topic>Disulfides - chemistry</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Fluorescence</topic><topic>Gold - chemistry</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecules</topic><topic>Nanoparticles</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Temperature</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Feng</creatorcontrib><creatorcontrib>Zhang, Hongquan</creatorcontrib><creatorcontrib>Dever, Brittany</creatorcontrib><creatorcontrib>Li, Xing-Fang</creatorcontrib><creatorcontrib>Le, X. Chris</creatorcontrib><collection>ACS Journals - Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Feng</au><au>Zhang, Hongquan</au><au>Dever, Brittany</au><au>Li, Xing-Fang</au><au>Le, X. Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Stability of DNA Functionalized Gold Nanoparticles</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2013-11-20</date><risdate>2013</risdate><volume>24</volume><issue>11</issue><spage>1790</spage><epage>1797</epage><pages>1790-1797</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Therapeutic uses of DNA functionalized gold nanoparticles (DNA-AuNPs) have shown great potential and exciting opportunities for disease diagnostics and treatment. Maintaining stable conjugation between DNA oligonucleotides and gold nanoparticles under thermally stressed conditions is one of the critical aspects for any of the practical applications. We systematically studied the thermal stability of DNA-AuNPs as affected by organosulfur anchor groups and packing densities. Using a fluorescence assay to determine the kinetics of releasing DNA molecules from DNA-AuNPs, we observed an opposite trend between the temperature-induced and chemical-induced release of DNA from DNA-AuNPs when comparing the DNA-AuNPs that were constructed with different anchor groups. Specifically, the bidentate Au–S bond formed with cyclic disulfide was thermally less stable than those formed with thiol or acyclic disulfide. However, the same bidentate Au–S bond was chemically more stable under the treatment of competing thiols (mercaptohexanol or dithiothreitol). DNA packing density on AuNPs influenced the thermal stability of DNA-AuNPs at 37 °C, but this effect was minimum as temperature increased to 85 °C. With the improved understanding from these results, we were able to design a strategy to enhance the stability of DNA-AuNPs by conjugating double-stranded DNA to AuNPs through multiple thiol anchors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24102258</pmid><doi>10.1021/bc300687z</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2013-11, Vol.24 (11), p.1790-1797
issn 1043-1802
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3836601
source MEDLINE; American Chemical Society Publications
subjects Deoxyribonucleic acid
Disulfides - chemistry
DNA
DNA - chemistry
Fluorescence
Gold - chemistry
Metal Nanoparticles - chemistry
Molecules
Nanoparticles
Sulfhydryl Compounds - chemistry
Temperature
Temperature effects
title Thermal Stability of DNA Functionalized Gold Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Stability%20of%20DNA%20Functionalized%20Gold%20Nanoparticles&rft.jtitle=Bioconjugate%20chemistry&rft.au=Li,%20Feng&rft.date=2013-11-20&rft.volume=24&rft.issue=11&rft.spage=1790&rft.epage=1797&rft.pages=1790-1797&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/bc300687z&rft_dat=%3Cproquest_pubme%3E1496885283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462882341&rft_id=info:pmid/24102258&rfr_iscdi=true