MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis

Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely unders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human molecular genetics 2013-12, Vol.22 (24), p.4967-4977
Hauptverfasser: Ha, Kyungsoo, Buchan, Jillian G, Alvarado, David M, McCall, Kevin, Vydyanath, Anupama, Luther, Pradeep K, Goldsmith, Matthew I, Dobbs, Matthew B, Gurnett, Christina A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4977
container_issue 24
container_start_page 4967
container_title Human molecular genetics
container_volume 22
creator Ha, Kyungsoo
Buchan, Jillian G
Alvarado, David M
McCall, Kevin
Vydyanath, Anupama
Luther, Pradeep K
Goldsmith, Matthew I
Dobbs, Matthew B
Gurnett, Christina A
description Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.
doi_str_mv 10.1093/hmg/ddt344
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3836476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1492611524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-822c0d9d9047ce436e14ea9d3bfc759a5d1a07abbff4645487f760d5a6fc149d3</originalsourceid><addsrcrecordid>eNqNkV1LwzAUhoMobk5v_AGSSxHqkiZN2xtBh18w0QsVvAppPtZo28ykFeavt3Nz6J1X5-J9eM45vAAcYnSKUU7GZT0bK9USSrfAEFOGohhlZBsMUc5oxHLEBmAvhFeEMKMk3QWDmGQpQTQZgue7l4uHCYZ114rWuiZAW8-F9TC86Uq3ouqTICsNTdfIJQBtAz914YWxoYS1U7oK0BkofFt6N_OLuQs27IMdI6qgD9ZzBJ6uLh8nN9H0_vp2cj6NJMW4jbI4lkjlKkc0lZoSpjHVIlekMDJNcpEoLFAqisIYymhCs9SkDKlEMCMx7bkROFt5511RayV103pR8bm3tfAL7oTlf5PGlnzmPjjJCKMp6wXHa4F3750OLa9tkLqqRKNdF3i_JWYYJzH9B8owIVn-bT1ZodK7ELw2m4sw4svOeN8ZX3XWw0e_f9igPyWRLzbGlTY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461338976</pqid></control><display><type>article</type><title>MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Ha, Kyungsoo ; Buchan, Jillian G ; Alvarado, David M ; McCall, Kevin ; Vydyanath, Anupama ; Luther, Pradeep K ; Goldsmith, Matthew I ; Dobbs, Matthew B ; Gurnett, Christina A</creator><creatorcontrib>Ha, Kyungsoo ; Buchan, Jillian G ; Alvarado, David M ; McCall, Kevin ; Vydyanath, Anupama ; Luther, Pradeep K ; Goldsmith, Matthew I ; Dobbs, Matthew B ; Gurnett, Christina A</creatorcontrib><description>Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddt344</identifier><identifier>PMID: 23873045</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Arthrogryposis - genetics ; Arthrogryposis - metabolism ; Body Patterning - genetics ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Danio rerio ; Disease Models, Animal ; Freshwater ; Gene Knockdown Techniques ; Heart - embryology ; Motor Activity - genetics ; Muscle Development - genetics ; Muscle Fibers, Slow-Twitch - metabolism ; Muscle, Skeletal - metabolism ; Mutation ; Protein Transport ; Sarcomeres - metabolism ; Zebrafish - genetics ; Zebrafish - metabolism</subject><ispartof>Human molecular genetics, 2013-12, Vol.22 (24), p.4967-4977</ispartof><rights>The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-822c0d9d9047ce436e14ea9d3bfc759a5d1a07abbff4645487f760d5a6fc149d3</citedby><cites>FETCH-LOGICAL-c411t-822c0d9d9047ce436e14ea9d3bfc759a5d1a07abbff4645487f760d5a6fc149d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23873045$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ha, Kyungsoo</creatorcontrib><creatorcontrib>Buchan, Jillian G</creatorcontrib><creatorcontrib>Alvarado, David M</creatorcontrib><creatorcontrib>McCall, Kevin</creatorcontrib><creatorcontrib>Vydyanath, Anupama</creatorcontrib><creatorcontrib>Luther, Pradeep K</creatorcontrib><creatorcontrib>Goldsmith, Matthew I</creatorcontrib><creatorcontrib>Dobbs, Matthew B</creatorcontrib><creatorcontrib>Gurnett, Christina A</creatorcontrib><title>MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.</description><subject>Animals</subject><subject>Arthrogryposis - genetics</subject><subject>Arthrogryposis - metabolism</subject><subject>Body Patterning - genetics</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Danio rerio</subject><subject>Disease Models, Animal</subject><subject>Freshwater</subject><subject>Gene Knockdown Techniques</subject><subject>Heart - embryology</subject><subject>Motor Activity - genetics</subject><subject>Muscle Development - genetics</subject><subject>Muscle Fibers, Slow-Twitch - metabolism</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Mutation</subject><subject>Protein Transport</subject><subject>Sarcomeres - metabolism</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1LwzAUhoMobk5v_AGSSxHqkiZN2xtBh18w0QsVvAppPtZo28ykFeavt3Nz6J1X5-J9eM45vAAcYnSKUU7GZT0bK9USSrfAEFOGohhlZBsMUc5oxHLEBmAvhFeEMKMk3QWDmGQpQTQZgue7l4uHCYZ114rWuiZAW8-F9TC86Uq3ouqTICsNTdfIJQBtAz914YWxoYS1U7oK0BkofFt6N_OLuQs27IMdI6qgD9ZzBJ6uLh8nN9H0_vp2cj6NJMW4jbI4lkjlKkc0lZoSpjHVIlekMDJNcpEoLFAqisIYymhCs9SkDKlEMCMx7bkROFt5511RayV103pR8bm3tfAL7oTlf5PGlnzmPjjJCKMp6wXHa4F3750OLa9tkLqqRKNdF3i_JWYYJzH9B8owIVn-bT1ZodK7ELw2m4sw4svOeN8ZX3XWw0e_f9igPyWRLzbGlTY</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Ha, Kyungsoo</creator><creator>Buchan, Jillian G</creator><creator>Alvarado, David M</creator><creator>McCall, Kevin</creator><creator>Vydyanath, Anupama</creator><creator>Luther, Pradeep K</creator><creator>Goldsmith, Matthew I</creator><creator>Dobbs, Matthew B</creator><creator>Gurnett, Christina A</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20131215</creationdate><title>MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis</title><author>Ha, Kyungsoo ; Buchan, Jillian G ; Alvarado, David M ; McCall, Kevin ; Vydyanath, Anupama ; Luther, Pradeep K ; Goldsmith, Matthew I ; Dobbs, Matthew B ; Gurnett, Christina A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-822c0d9d9047ce436e14ea9d3bfc759a5d1a07abbff4645487f760d5a6fc149d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Arthrogryposis - genetics</topic><topic>Arthrogryposis - metabolism</topic><topic>Body Patterning - genetics</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Danio rerio</topic><topic>Disease Models, Animal</topic><topic>Freshwater</topic><topic>Gene Knockdown Techniques</topic><topic>Heart - embryology</topic><topic>Motor Activity - genetics</topic><topic>Muscle Development - genetics</topic><topic>Muscle Fibers, Slow-Twitch - metabolism</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Mutation</topic><topic>Protein Transport</topic><topic>Sarcomeres - metabolism</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Kyungsoo</creatorcontrib><creatorcontrib>Buchan, Jillian G</creatorcontrib><creatorcontrib>Alvarado, David M</creatorcontrib><creatorcontrib>McCall, Kevin</creatorcontrib><creatorcontrib>Vydyanath, Anupama</creatorcontrib><creatorcontrib>Luther, Pradeep K</creatorcontrib><creatorcontrib>Goldsmith, Matthew I</creatorcontrib><creatorcontrib>Dobbs, Matthew B</creatorcontrib><creatorcontrib>Gurnett, Christina A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ha, Kyungsoo</au><au>Buchan, Jillian G</au><au>Alvarado, David M</au><au>McCall, Kevin</au><au>Vydyanath, Anupama</au><au>Luther, Pradeep K</au><au>Goldsmith, Matthew I</au><au>Dobbs, Matthew B</au><au>Gurnett, Christina A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2013-12-15</date><risdate>2013</risdate><volume>22</volume><issue>24</issue><spage>4967</spage><epage>4977</epage><pages>4967-4977</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><abstract>Myosin-binding protein C1 (MYBPC1) is an abundant skeletal muscle protein that is expressed predominantly in slow-twitch muscle fibers. Human MYBPC1 mutations are associated with distal arthrogryposis type 1 and lethal congenital contracture syndrome type 4. As MYBPC1 function is incompletely understood, the mechanism by which human mutations result in contractures is unknown. Here, we demonstrate using antisense morpholino knockdown, that mybpc1 is required for embryonic motor activity and survival in a zebrafish model of arthrogryposis. Mybpc1 morphant embryos have severe body curvature, cardiac edema, impaired motor excitation and are delayed in hatching. Myofibril organization is selectively impaired in slow skeletal muscle and sarcomere numbers are greatly reduced in mybpc1 knockdown embryos, although electron microscopy reveals normal sarcomere structure. To evaluate the effects of human distal arthrogryposis mutations, mybpc1 mRNAs containing the corresponding human W236R and Y856H MYBPC1 mutations were injected into embryos. Dominant-negative effects of these mutations were suggested by the resultant mild bent body curvature, decreased motor activity, as well as impaired overall survival compared with overexpression of wild-type RNA. These results demonstrate a critical role for mybpc1 in slow skeletal muscle development and establish zebrafish as a tractable model of human distal arthrogryposis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23873045</pmid><doi>10.1093/hmg/ddt344</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2013-12, Vol.22 (24), p.4967-4977
issn 0964-6906
1460-2083
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3836476
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Arthrogryposis - genetics
Arthrogryposis - metabolism
Body Patterning - genetics
Carrier Proteins - genetics
Carrier Proteins - metabolism
Danio rerio
Disease Models, Animal
Freshwater
Gene Knockdown Techniques
Heart - embryology
Motor Activity - genetics
Muscle Development - genetics
Muscle Fibers, Slow-Twitch - metabolism
Muscle, Skeletal - metabolism
Mutation
Protein Transport
Sarcomeres - metabolism
Zebrafish - genetics
Zebrafish - metabolism
title MYBPC1 mutations impair skeletal muscle function in zebrafish models of arthrogryposis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A58%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MYBPC1%20mutations%20impair%20skeletal%20muscle%20function%20in%20zebrafish%20models%20of%20arthrogryposis&rft.jtitle=Human%20molecular%20genetics&rft.au=Ha,%20Kyungsoo&rft.date=2013-12-15&rft.volume=22&rft.issue=24&rft.spage=4967&rft.epage=4977&rft.pages=4967-4977&rft.issn=0964-6906&rft.eissn=1460-2083&rft_id=info:doi/10.1093/hmg/ddt344&rft_dat=%3Cproquest_pubme%3E1492611524%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461338976&rft_id=info:pmid/23873045&rfr_iscdi=true