A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice

Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2013-12, Vol.195 (4), p.1385-1395
Hauptverfasser: Kelly, Scott A, Bell, Timothy A, Selitsky, Sara R, Buus, Ryan J, Hua, Kunjie, Weinstock, George M, Garland, Jr, Theodore, Pardo-Manuel de Villena, Fernando, Pomp, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1395
container_issue 4
container_start_page 1385
container_title Genetics (Austin)
container_volume 195
creator Kelly, Scott A
Bell, Timothy A
Selitsky, Sara R
Buus, Ryan J
Hua, Kunjie
Weinstock, George M
Garland, Jr, Theodore
Pardo-Manuel de Villena, Fernando
Pomp, Daniel
description Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.
doi_str_mv 10.1534/genetics.113.154476
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3832280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465179661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-3238e4f8bdf28caf220187b06f1685713de8d713e2e717b5f1f7dac93e67e2323</originalsourceid><addsrcrecordid>eNqNks1u1DAUhSMEoqXwBEjIEptuUvwX29kgVRUFpEpsYG05zs3Eo9gOdjLS8H68F57OtCqsWF3L9zvH11enqt4SfEUaxj9sIMDibL4ihJUbzqV4Vp2TlrOaCkaePzmfVa9y3mKMRduol9UZ5bgRnNDz6vc1CnEHE3JhSTE4i7ILmwlQWO0EcXE9oDlOex_TPLrsC4eWEZDfxwKiEcxufw_MMN_DHB3mQi6jBHmOIbuuuA0xHWUuuNqvuXijeYQQlyJEdjTJ2AWS-wU96vbIm20RJOhXu7gYDo-OLvT15HyHTnJvcj40vLPwunoxmCnDm1O9qH7cfvp-86W--_b56831XW25EEvNKFPAB9X1A1XWDJRiomSHxUCEaiRhPai-FKAgieyagQyyN7ZlICTQor6oPh5957Xz0FsoSzOTnpPzJu11NE7_3Qlu1Ju400wxShUuBpcngxR_rpAX7V22ME0mQFyzJg3GUimO_wPloiGyFYIU9P0_6DauKZRNFEryhrGWiUKxI2VTzDnB8Dg3wfqQKP2QKF0SpY-JKqp3T7_8qHmIEPsDeH_Ovg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1474533936</pqid></control><display><type>article</type><title>A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Kelly, Scott A ; Bell, Timothy A ; Selitsky, Sara R ; Buus, Ryan J ; Hua, Kunjie ; Weinstock, George M ; Garland, Jr, Theodore ; Pardo-Manuel de Villena, Fernando ; Pomp, Daniel</creator><creatorcontrib>Kelly, Scott A ; Bell, Timothy A ; Selitsky, Sara R ; Buus, Ryan J ; Hua, Kunjie ; Weinstock, George M ; Garland, Jr, Theodore ; Pardo-Manuel de Villena, Fernando ; Pomp, Daniel</creatorcontrib><description>Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.113.154476</identifier><identifier>PMID: 24056412</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Genetic diversity ; Genetics ; Genotype &amp; phenotype ; Hindlimb - growth &amp; development ; Hindlimb - pathology ; Introns ; Investigations ; Mice ; Mice, Inbred C57BL ; Muscle Development - genetics ; Muscle, Skeletal - growth &amp; development ; Muscle, Skeletal - pathology ; Myosin Heavy Chains - genetics ; Myosin Heavy Chains - metabolism ; Phenotype ; Polymorphism ; Polymorphism, Single Nucleotide</subject><ispartof>Genetics (Austin), 2013-12, Vol.195 (4), p.1385-1395</ispartof><rights>Copyright Genetics Society of America Dec 2013</rights><rights>Copyright © 2013 by the Genetics Society of America 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-3238e4f8bdf28caf220187b06f1685713de8d713e2e717b5f1f7dac93e67e2323</citedby><cites>FETCH-LOGICAL-c466t-3238e4f8bdf28caf220187b06f1685713de8d713e2e717b5f1f7dac93e67e2323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24056412$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Scott A</creatorcontrib><creatorcontrib>Bell, Timothy A</creatorcontrib><creatorcontrib>Selitsky, Sara R</creatorcontrib><creatorcontrib>Buus, Ryan J</creatorcontrib><creatorcontrib>Hua, Kunjie</creatorcontrib><creatorcontrib>Weinstock, George M</creatorcontrib><creatorcontrib>Garland, Jr, Theodore</creatorcontrib><creatorcontrib>Pardo-Manuel de Villena, Fernando</creatorcontrib><creatorcontrib>Pomp, Daniel</creatorcontrib><title>A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.</description><subject>Animals</subject><subject>Genetic diversity</subject><subject>Genetics</subject><subject>Genotype &amp; phenotype</subject><subject>Hindlimb - growth &amp; development</subject><subject>Hindlimb - pathology</subject><subject>Introns</subject><subject>Investigations</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Muscle Development - genetics</subject><subject>Muscle, Skeletal - growth &amp; development</subject><subject>Muscle, Skeletal - pathology</subject><subject>Myosin Heavy Chains - genetics</subject><subject>Myosin Heavy Chains - metabolism</subject><subject>Phenotype</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNks1u1DAUhSMEoqXwBEjIEptuUvwX29kgVRUFpEpsYG05zs3Eo9gOdjLS8H68F57OtCqsWF3L9zvH11enqt4SfEUaxj9sIMDibL4ihJUbzqV4Vp2TlrOaCkaePzmfVa9y3mKMRduol9UZ5bgRnNDz6vc1CnEHE3JhSTE4i7ILmwlQWO0EcXE9oDlOex_TPLrsC4eWEZDfxwKiEcxufw_MMN_DHB3mQi6jBHmOIbuuuA0xHWUuuNqvuXijeYQQlyJEdjTJ2AWS-wU96vbIm20RJOhXu7gYDo-OLvT15HyHTnJvcj40vLPwunoxmCnDm1O9qH7cfvp-86W--_b56831XW25EEvNKFPAB9X1A1XWDJRiomSHxUCEaiRhPai-FKAgieyagQyyN7ZlICTQor6oPh5957Xz0FsoSzOTnpPzJu11NE7_3Qlu1Ju400wxShUuBpcngxR_rpAX7V22ME0mQFyzJg3GUimO_wPloiGyFYIU9P0_6DauKZRNFEryhrGWiUKxI2VTzDnB8Dg3wfqQKP2QKF0SpY-JKqp3T7_8qHmIEPsDeH_Ovg</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Kelly, Scott A</creator><creator>Bell, Timothy A</creator><creator>Selitsky, Sara R</creator><creator>Buus, Ryan J</creator><creator>Hua, Kunjie</creator><creator>Weinstock, George M</creator><creator>Garland, Jr, Theodore</creator><creator>Pardo-Manuel de Villena, Fernando</creator><creator>Pomp, Daniel</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice</title><author>Kelly, Scott A ; Bell, Timothy A ; Selitsky, Sara R ; Buus, Ryan J ; Hua, Kunjie ; Weinstock, George M ; Garland, Jr, Theodore ; Pardo-Manuel de Villena, Fernando ; Pomp, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-3238e4f8bdf28caf220187b06f1685713de8d713e2e717b5f1f7dac93e67e2323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Genetic diversity</topic><topic>Genetics</topic><topic>Genotype &amp; phenotype</topic><topic>Hindlimb - growth &amp; development</topic><topic>Hindlimb - pathology</topic><topic>Introns</topic><topic>Investigations</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Muscle Development - genetics</topic><topic>Muscle, Skeletal - growth &amp; development</topic><topic>Muscle, Skeletal - pathology</topic><topic>Myosin Heavy Chains - genetics</topic><topic>Myosin Heavy Chains - metabolism</topic><topic>Phenotype</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Scott A</creatorcontrib><creatorcontrib>Bell, Timothy A</creatorcontrib><creatorcontrib>Selitsky, Sara R</creatorcontrib><creatorcontrib>Buus, Ryan J</creatorcontrib><creatorcontrib>Hua, Kunjie</creatorcontrib><creatorcontrib>Weinstock, George M</creatorcontrib><creatorcontrib>Garland, Jr, Theodore</creatorcontrib><creatorcontrib>Pardo-Manuel de Villena, Fernando</creatorcontrib><creatorcontrib>Pomp, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Scott A</au><au>Bell, Timothy A</au><au>Selitsky, Sara R</au><au>Buus, Ryan J</au><au>Hua, Kunjie</au><au>Weinstock, George M</au><au>Garland, Jr, Theodore</au><au>Pardo-Manuel de Villena, Fernando</au><au>Pomp, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>195</volume><issue>4</issue><spage>1385</spage><epage>1395</epage><pages>1385-1395</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Replicated artificial selection for high levels of voluntary wheel running in an outbred strain of mice favored an autosomal recessive allele whose primary phenotypic effect is a 50% reduction in hind-limb muscle mass. Within the High Runner (HR) lines of mice, the numerous pleiotropic effects (e.g., larger hearts, reduced total body mass and fat mass, longer hind-limb bones) of this hypothesized adaptive allele include functional characteristics that facilitate high levels of voluntary wheel running (e.g., doubling of mass-specific muscle aerobic capacity, increased fatigue resistance of isolated muscles, longer hind-limb bones). Previously, we created a backcross population suitable for mapping the responsible locus. We phenotypically characterized the population and mapped the Minimsc locus to a 2.6-Mb interval on MMU11, a region containing ∼100 known or predicted genes. Here, we present a novel strategy to identify the genetic variant causing the mini-muscle phenotype. Using high-density genotyping and whole-genome sequencing of key backcross individuals and HR mice with and without the mini-muscle mutation, from both recent and historical generations of the HR lines, we show that a SNP representing a C-to-T transition located in a 709-bp intron between exons 11 and 12 of the Myosin heavy polypeptide 4 (Myh4) skeletal muscle gene (position 67,244,850 on MMU11; assembly, December 2011, GRCm38/mm10; ENSMUSG00000057003) is responsible for the mini-muscle phenotype, Myh4(Minimsc). Using next-generation sequencing, our approach can be extended to identify causative mutations arising in mouse inbred lines and thus offers a great avenue to overcome one of the most challenging steps in quantitative genetics.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>24056412</pmid><doi>10.1534/genetics.113.154476</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2013-12, Vol.195 (4), p.1385-1395
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3832280
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Genetic diversity
Genetics
Genotype & phenotype
Hindlimb - growth & development
Hindlimb - pathology
Introns
Investigations
Mice
Mice, Inbred C57BL
Muscle Development - genetics
Muscle, Skeletal - growth & development
Muscle, Skeletal - pathology
Myosin Heavy Chains - genetics
Myosin Heavy Chains - metabolism
Phenotype
Polymorphism
Polymorphism, Single Nucleotide
title A novel intronic single nucleotide polymorphism in the myosin heavy polypeptide 4 gene is responsible for the mini-muscle phenotype characterized by major reduction in hind-limb muscle mass in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20intronic%20single%20nucleotide%20polymorphism%20in%20the%20myosin%20heavy%20polypeptide%204%20gene%20is%20responsible%20for%20the%20mini-muscle%20phenotype%20characterized%20by%20major%20reduction%20in%20hind-limb%20muscle%20mass%20in%20mice&rft.jtitle=Genetics%20(Austin)&rft.au=Kelly,%20Scott%20A&rft.date=2013-12-01&rft.volume=195&rft.issue=4&rft.spage=1385&rft.epage=1395&rft.pages=1385-1395&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.113.154476&rft_dat=%3Cproquest_pubme%3E1465179661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1474533936&rft_id=info:pmid/24056412&rfr_iscdi=true