Microfluidic devices for cell cultivation and proliferation
Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications su...
Gespeichert in:
Veröffentlicht in: | Biomicrofluidics 2013-09, Vol.7 (5), p.51502 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 51502 |
container_title | Biomicrofluidics |
container_volume | 7 |
creator | Tehranirokh, Masoomeh Kouzani, Abbas Z. Francis, Paul S. Kanwar, Jagat R. |
description | Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. |
doi_str_mv | 10.1063/1.4826935 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>24273628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4e46cc68add728323de7c7febb79c5bc769699aa59daae34d957854f5bc493503</originalsourceid><addsrcrecordid>eNp9kFtLAzEQhYMotlYf_AOyrwpbN7dNgiBI8QaKL_ocsrloJN0s2e2C_961rbUi-DTDzDfnMAeAY1hMYVHiczglHJUC0x0whgKjHBaU7271I3DQtu9FQSFDaB-MEEEMl4iPwcWj1ym6sPDG68zY3mvbZi6mTNsQMr0Ine9V52OdqdpkTYrBO5uWk0Ow51Ro7dG6TsDLzfXz7C5_eLq9n1095JpC2OXEklLrkitjGOIYYWOZZs5WFROaVpqVohRCKSqMUhYTIyjjlLhhRYafCjwBlyvdZlHNrdG27pIKskl-rtKHjMrL35vav8nX2EvMkeCCDAKnK4Hh1bZN1m1uYSG_EpRQrhMc2JNtsw35HdkAnK2AVvtumcOG6WP6UZKNcf_Bf60_AaeHiXI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microfluidic devices for cell cultivation and proliferation</title><source>AIP Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Tehranirokh, Masoomeh ; Kouzani, Abbas Z. ; Francis, Paul S. ; Kanwar, Jagat R.</creator><creatorcontrib>Tehranirokh, Masoomeh ; Kouzani, Abbas Z. ; Francis, Paul S. ; Kanwar, Jagat R.</creatorcontrib><description>Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.</description><identifier>ISSN: 1932-1058</identifier><identifier>EISSN: 1932-1058</identifier><identifier>DOI: 10.1063/1.4826935</identifier><identifier>PMID: 24273628</identifier><identifier>CODEN: BIOMGB</identifier><language>eng</language><publisher>United States: AIP Publishing LLC</publisher><subject>Review</subject><ispartof>Biomicrofluidics, 2013-09, Vol.7 (5), p.51502</ispartof><rights>AIP Publishing LLC</rights><rights>Copyright © 2013 AIP Publishing LLC 2013 AIP Publishing LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4e46cc68add728323de7c7febb79c5bc769699aa59daae34d957854f5bc493503</citedby><cites>FETCH-LOGICAL-c511t-4e46cc68add728323de7c7febb79c5bc769699aa59daae34d957854f5bc493503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829894/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://pubs.aip.org/bmf/article-lookup/doi/10.1063/1.4826935$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,313,314,723,776,780,788,790,881,4497,27901,27903,27904,53769,53771,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24273628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tehranirokh, Masoomeh</creatorcontrib><creatorcontrib>Kouzani, Abbas Z.</creatorcontrib><creatorcontrib>Francis, Paul S.</creatorcontrib><creatorcontrib>Kanwar, Jagat R.</creatorcontrib><title>Microfluidic devices for cell cultivation and proliferation</title><title>Biomicrofluidics</title><addtitle>Biomicrofluidics</addtitle><description>Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.</description><subject>Review</subject><issn>1932-1058</issn><issn>1932-1058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLAzEQhYMotlYf_AOyrwpbN7dNgiBI8QaKL_ocsrloJN0s2e2C_961rbUi-DTDzDfnMAeAY1hMYVHiczglHJUC0x0whgKjHBaU7271I3DQtu9FQSFDaB-MEEEMl4iPwcWj1ym6sPDG68zY3mvbZi6mTNsQMr0Ine9V52OdqdpkTYrBO5uWk0Ow51Ro7dG6TsDLzfXz7C5_eLq9n1095JpC2OXEklLrkitjGOIYYWOZZs5WFROaVpqVohRCKSqMUhYTIyjjlLhhRYafCjwBlyvdZlHNrdG27pIKskl-rtKHjMrL35vav8nX2EvMkeCCDAKnK4Hh1bZN1m1uYSG_EpRQrhMc2JNtsw35HdkAnK2AVvtumcOG6WP6UZKNcf_Bf60_AaeHiXI</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Tehranirokh, Masoomeh</creator><creator>Kouzani, Abbas Z.</creator><creator>Francis, Paul S.</creator><creator>Kanwar, Jagat R.</creator><general>AIP Publishing LLC</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20130901</creationdate><title>Microfluidic devices for cell cultivation and proliferation</title><author>Tehranirokh, Masoomeh ; Kouzani, Abbas Z. ; Francis, Paul S. ; Kanwar, Jagat R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4e46cc68add728323de7c7febb79c5bc769699aa59daae34d957854f5bc493503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tehranirokh, Masoomeh</creatorcontrib><creatorcontrib>Kouzani, Abbas Z.</creatorcontrib><creatorcontrib>Francis, Paul S.</creatorcontrib><creatorcontrib>Kanwar, Jagat R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomicrofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tehranirokh, Masoomeh</au><au>Kouzani, Abbas Z.</au><au>Francis, Paul S.</au><au>Kanwar, Jagat R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic devices for cell cultivation and proliferation</atitle><jtitle>Biomicrofluidics</jtitle><addtitle>Biomicrofluidics</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>7</volume><issue>5</issue><spage>51502</spage><pages>51502-</pages><issn>1932-1058</issn><eissn>1932-1058</eissn><coden>BIOMGB</coden><abstract>Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined.</abstract><cop>United States</cop><pub>AIP Publishing LLC</pub><pmid>24273628</pmid><doi>10.1063/1.4826935</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-1058 |
ispartof | Biomicrofluidics, 2013-09, Vol.7 (5), p.51502 |
issn | 1932-1058 1932-1058 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829894 |
source | AIP Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Review |
title | Microfluidic devices for cell cultivation and proliferation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20devices%20for%20cell%20cultivation%20and%20proliferation&rft.jtitle=Biomicrofluidics&rft.au=Tehranirokh,%20Masoomeh&rft.date=2013-09-01&rft.volume=7&rft.issue=5&rft.spage=51502&rft.pages=51502-&rft.issn=1932-1058&rft.eissn=1932-1058&rft.coden=BIOMGB&rft_id=info:doi/10.1063/1.4826935&rft_dat=%3Cpubmed_cross%3E24273628%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24273628&rfr_iscdi=true |