Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin

Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-10, Vol.288 (43), p.30956-30968
Hauptverfasser: Kurokawa, Kenji, Jung, Dong-Jun, An, Jang-Hyun, Fuchs, Katharina, Jeon, Yu-Jin, Kim, Na-Hyang, Li, Xuehua, Tateishi, Koichiro, Park, Ji Ae, Xia, Guoqing, Matsushita, Misao, Takahashi, Kazue, Park, Hee-Ju, Peschel, Andreas, Lee, Bok Luel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 30968
container_issue 43
container_start_page 30956
container_title The Journal of biological chemistry
container_volume 288
creator Kurokawa, Kenji
Jung, Dong-Jun
An, Jang-Hyun
Fuchs, Katharina
Jeon, Yu-Jin
Kim, Na-Hyang
Li, Xuehua
Tateishi, Koichiro
Park, Ji Ae
Xia, Guoqing
Matsushita, Misao
Takahashi, Kazue
Park, Hee-Ju
Peschel, Andreas
Lee, Bok Luel
description Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection. Background: The exact staphylococcal antigenic determinants of anti-staphylococcal IgG and mannose-binding lectin (MBL) have not been determined. Results: The antigenic epitopes of the staphylococcal wall teichoic acid (WTA) for serum IgG and MBL are O-N-acetyl-d-glucosamine residues. Conclusion: The sugar moiety of WTA is an important molecular determinant in host responses to S. aureus. Significance: The results provide new insights into the host-pathogen interaction.
doi_str_mv 10.1074/jbc.M113.509893
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820486971</els_id><sourcerecordid>1446874215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-6d6a48a7a236e49a6461b25de0167c465ee5c7d52907d63104d3c64538c4a7ec3</originalsourceid><addsrcrecordid>eNp1kUFv0zAYhiMEYmVw5oZ85JLOTmwnviBVFXRInXbYENws9_PX1pNjhziplP_BD8ZTxwQHfPHBj1_7_Z6ieM_oktGGXz3sYHnDWL0UVLWqflEsGG3rshbsx8tiQWnFSlWJ9qJ4k9IDzYsr9rq4qDjlQvF2Ufza-Bki9m6MPSYS9-RuNP1x9hEigPHku_Ge3KODY3RAVuAs2cQTDoGsY9d77DCMZYfWmREtue1TDLE_mkOEeYzJJXJyhlxPnQnkDoepI6swul20MzHBkhsTQkxY7lywLhzIFmF04W3xam98wndP-2Xx7cvn-_V1ub3dfF2vtiXkumMprTS8NY2paolcGckl21XCImWyAS4FooDGikrRxsqaUW5rkFzULXDTINSXxadzbj_tcgXIVQbjdT-4zgyzjsbpf0-CO-pDPOm6rRSnKgd8fAoY4s8J06g7lwC9NwHjlDTjXLYNr5jI6NUZhSGmNOD--RlG9aNLnV3qR5f67DLf-PD37575P_IyoM4A5hmdHA46gcMAWcaQ56htdP8N_w1qpbHo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446874215</pqid></control><display><type>article</type><title>Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Kurokawa, Kenji ; Jung, Dong-Jun ; An, Jang-Hyun ; Fuchs, Katharina ; Jeon, Yu-Jin ; Kim, Na-Hyang ; Li, Xuehua ; Tateishi, Koichiro ; Park, Ji Ae ; Xia, Guoqing ; Matsushita, Misao ; Takahashi, Kazue ; Park, Hee-Ju ; Peschel, Andreas ; Lee, Bok Luel</creator><creatorcontrib>Kurokawa, Kenji ; Jung, Dong-Jun ; An, Jang-Hyun ; Fuchs, Katharina ; Jeon, Yu-Jin ; Kim, Na-Hyang ; Li, Xuehua ; Tateishi, Koichiro ; Park, Ji Ae ; Xia, Guoqing ; Matsushita, Misao ; Takahashi, Kazue ; Park, Hee-Ju ; Peschel, Andreas ; Lee, Bok Luel</creatorcontrib><description>Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection. Background: The exact staphylococcal antigenic determinants of anti-staphylococcal IgG and mannose-binding lectin (MBL) have not been determined. Results: The antigenic epitopes of the staphylococcal wall teichoic acid (WTA) for serum IgG and MBL are O-N-acetyl-d-glucosamine residues. Conclusion: The sugar moiety of WTA is an important molecular determinant in host responses to S. aureus. Significance: The results provide new insights into the host-pathogen interaction.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.509893</identifier><identifier>PMID: 24045948</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptive Immunity - physiology ; Adult ; Antibodies, Bacterial - immunology ; Bacterial Proteins - genetics ; Bacterial Proteins - immunology ; Cell Wall ; Cell Wall - chemistry ; Cell Wall - immunology ; Complement System ; Epitopes - chemistry ; Epitopes - immunology ; Female ; Gram-positive Bacteria ; Host Defense ; Host-Pathogen Interactions ; Humans ; Immunity, Innate - physiology ; Immunoglobulin G - immunology ; Immunology ; Infant ; Infant, Newborn ; Innate Immunity ; Leukocytes - immunology ; Leukocytes - microbiology ; Male ; Mannose-Binding Lectin - blood ; Mannose-Binding Lectin - immunology ; Mutation ; N-Acetylglucosaminyltransferases - genetics ; N-Acetylglucosaminyltransferases - immunology ; Phagocytosis - immunology ; S. aureus ; Staphylococcus aureus - chemistry ; Staphylococcus aureus - enzymology ; Staphylococcus aureus - immunology ; Teichoic Acids - chemistry ; Teichoic Acids - immunology</subject><ispartof>The Journal of biological chemistry, 2013-10, Vol.288 (43), p.30956-30968</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-6d6a48a7a236e49a6461b25de0167c465ee5c7d52907d63104d3c64538c4a7ec3</citedby><cites>FETCH-LOGICAL-c509t-6d6a48a7a236e49a6461b25de0167c465ee5c7d52907d63104d3c64538c4a7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829409/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829409/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24045948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Jung, Dong-Jun</creatorcontrib><creatorcontrib>An, Jang-Hyun</creatorcontrib><creatorcontrib>Fuchs, Katharina</creatorcontrib><creatorcontrib>Jeon, Yu-Jin</creatorcontrib><creatorcontrib>Kim, Na-Hyang</creatorcontrib><creatorcontrib>Li, Xuehua</creatorcontrib><creatorcontrib>Tateishi, Koichiro</creatorcontrib><creatorcontrib>Park, Ji Ae</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><creatorcontrib>Matsushita, Misao</creatorcontrib><creatorcontrib>Takahashi, Kazue</creatorcontrib><creatorcontrib>Park, Hee-Ju</creatorcontrib><creatorcontrib>Peschel, Andreas</creatorcontrib><creatorcontrib>Lee, Bok Luel</creatorcontrib><title>Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection. Background: The exact staphylococcal antigenic determinants of anti-staphylococcal IgG and mannose-binding lectin (MBL) have not been determined. Results: The antigenic epitopes of the staphylococcal wall teichoic acid (WTA) for serum IgG and MBL are O-N-acetyl-d-glucosamine residues. Conclusion: The sugar moiety of WTA is an important molecular determinant in host responses to S. aureus. Significance: The results provide new insights into the host-pathogen interaction.</description><subject>Adaptive Immunity - physiology</subject><subject>Adult</subject><subject>Antibodies, Bacterial - immunology</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - immunology</subject><subject>Cell Wall</subject><subject>Cell Wall - chemistry</subject><subject>Cell Wall - immunology</subject><subject>Complement System</subject><subject>Epitopes - chemistry</subject><subject>Epitopes - immunology</subject><subject>Female</subject><subject>Gram-positive Bacteria</subject><subject>Host Defense</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immunity, Innate - physiology</subject><subject>Immunoglobulin G - immunology</subject><subject>Immunology</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Innate Immunity</subject><subject>Leukocytes - immunology</subject><subject>Leukocytes - microbiology</subject><subject>Male</subject><subject>Mannose-Binding Lectin - blood</subject><subject>Mannose-Binding Lectin - immunology</subject><subject>Mutation</subject><subject>N-Acetylglucosaminyltransferases - genetics</subject><subject>N-Acetylglucosaminyltransferases - immunology</subject><subject>Phagocytosis - immunology</subject><subject>S. aureus</subject><subject>Staphylococcus aureus - chemistry</subject><subject>Staphylococcus aureus - enzymology</subject><subject>Staphylococcus aureus - immunology</subject><subject>Teichoic Acids - chemistry</subject><subject>Teichoic Acids - immunology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFv0zAYhiMEYmVw5oZ85JLOTmwnviBVFXRInXbYENws9_PX1pNjhziplP_BD8ZTxwQHfPHBj1_7_Z6ieM_oktGGXz3sYHnDWL0UVLWqflEsGG3rshbsx8tiQWnFSlWJ9qJ4k9IDzYsr9rq4qDjlQvF2Ufza-Bki9m6MPSYS9-RuNP1x9hEigPHku_Ge3KODY3RAVuAs2cQTDoGsY9d77DCMZYfWmREtue1TDLE_mkOEeYzJJXJyhlxPnQnkDoepI6swul20MzHBkhsTQkxY7lywLhzIFmF04W3xam98wndP-2Xx7cvn-_V1ub3dfF2vtiXkumMprTS8NY2paolcGckl21XCImWyAS4FooDGikrRxsqaUW5rkFzULXDTINSXxadzbj_tcgXIVQbjdT-4zgyzjsbpf0-CO-pDPOm6rRSnKgd8fAoY4s8J06g7lwC9NwHjlDTjXLYNr5jI6NUZhSGmNOD--RlG9aNLnV3qR5f67DLf-PD37575P_IyoM4A5hmdHA46gcMAWcaQ56htdP8N_w1qpbHo</recordid><startdate>20131025</startdate><enddate>20131025</enddate><creator>Kurokawa, Kenji</creator><creator>Jung, Dong-Jun</creator><creator>An, Jang-Hyun</creator><creator>Fuchs, Katharina</creator><creator>Jeon, Yu-Jin</creator><creator>Kim, Na-Hyang</creator><creator>Li, Xuehua</creator><creator>Tateishi, Koichiro</creator><creator>Park, Ji Ae</creator><creator>Xia, Guoqing</creator><creator>Matsushita, Misao</creator><creator>Takahashi, Kazue</creator><creator>Park, Hee-Ju</creator><creator>Peschel, Andreas</creator><creator>Lee, Bok Luel</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131025</creationdate><title>Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin</title><author>Kurokawa, Kenji ; Jung, Dong-Jun ; An, Jang-Hyun ; Fuchs, Katharina ; Jeon, Yu-Jin ; Kim, Na-Hyang ; Li, Xuehua ; Tateishi, Koichiro ; Park, Ji Ae ; Xia, Guoqing ; Matsushita, Misao ; Takahashi, Kazue ; Park, Hee-Ju ; Peschel, Andreas ; Lee, Bok Luel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-6d6a48a7a236e49a6461b25de0167c465ee5c7d52907d63104d3c64538c4a7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive Immunity - physiology</topic><topic>Adult</topic><topic>Antibodies, Bacterial - immunology</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - immunology</topic><topic>Cell Wall</topic><topic>Cell Wall - chemistry</topic><topic>Cell Wall - immunology</topic><topic>Complement System</topic><topic>Epitopes - chemistry</topic><topic>Epitopes - immunology</topic><topic>Female</topic><topic>Gram-positive Bacteria</topic><topic>Host Defense</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immunity, Innate - physiology</topic><topic>Immunoglobulin G - immunology</topic><topic>Immunology</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Innate Immunity</topic><topic>Leukocytes - immunology</topic><topic>Leukocytes - microbiology</topic><topic>Male</topic><topic>Mannose-Binding Lectin - blood</topic><topic>Mannose-Binding Lectin - immunology</topic><topic>Mutation</topic><topic>N-Acetylglucosaminyltransferases - genetics</topic><topic>N-Acetylglucosaminyltransferases - immunology</topic><topic>Phagocytosis - immunology</topic><topic>S. aureus</topic><topic>Staphylococcus aureus - chemistry</topic><topic>Staphylococcus aureus - enzymology</topic><topic>Staphylococcus aureus - immunology</topic><topic>Teichoic Acids - chemistry</topic><topic>Teichoic Acids - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurokawa, Kenji</creatorcontrib><creatorcontrib>Jung, Dong-Jun</creatorcontrib><creatorcontrib>An, Jang-Hyun</creatorcontrib><creatorcontrib>Fuchs, Katharina</creatorcontrib><creatorcontrib>Jeon, Yu-Jin</creatorcontrib><creatorcontrib>Kim, Na-Hyang</creatorcontrib><creatorcontrib>Li, Xuehua</creatorcontrib><creatorcontrib>Tateishi, Koichiro</creatorcontrib><creatorcontrib>Park, Ji Ae</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><creatorcontrib>Matsushita, Misao</creatorcontrib><creatorcontrib>Takahashi, Kazue</creatorcontrib><creatorcontrib>Park, Hee-Ju</creatorcontrib><creatorcontrib>Peschel, Andreas</creatorcontrib><creatorcontrib>Lee, Bok Luel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurokawa, Kenji</au><au>Jung, Dong-Jun</au><au>An, Jang-Hyun</au><au>Fuchs, Katharina</au><au>Jeon, Yu-Jin</au><au>Kim, Na-Hyang</au><au>Li, Xuehua</au><au>Tateishi, Koichiro</au><au>Park, Ji Ae</au><au>Xia, Guoqing</au><au>Matsushita, Misao</au><au>Takahashi, Kazue</au><au>Park, Hee-Ju</au><au>Peschel, Andreas</au><au>Lee, Bok Luel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-10-25</date><risdate>2013</risdate><volume>288</volume><issue>43</issue><spage>30956</spage><epage>30968</epage><pages>30956-30968</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Serum antibodies and mannose-binding lectin (MBL) are important host defense factors for host adaptive and innate immunity, respectively. Antibodies and MBL also initiate the classical and lectin complement pathways, respectively, leading to opsonophagocytosis. We have shown previously that Staphylococcus aureus wall teichoic acid (WTA), a cell wall glycopolymer consisting of ribitol phosphate substituted with α- or β-O-N-acetyl-d-glucosamine (GlcNAc) and d-alanine, is recognized by MBL and serum anti-WTA IgG. However, the exact antigenic determinants to which anti-WTA antibodies or MBL bind have not been determined. To answer this question, several S. aureus mutants, such as α-GlcNAc glycosyltransferase-deficient S. aureus ΔtarM, β-GlcNAc glycosyltransferase-deficient ΔtarS, and ΔtarMS double mutant cells, were prepared from a laboratory and a community-associated methicillin-resistant S. aureus strain. Here, we describe the unexpected finding that β-GlcNAc WTA-deficient ΔtarS mutant cells (which have intact α-GlcNAc) escape from anti-WTA antibody-mediated opsonophagocytosis, whereas α-GlcNAc WTA-deficient ΔtarM mutant cells (which have intact β-GlcNAc) are efficiently engulfed by human leukocytes via anti-WTA IgG. Likewise, MBL binding in S. aureus cells was lost in the ΔtarMS double mutant but not in either single mutant. When we determined the serum concentrations of the anti-α- or anti-β-GlcNAc-specific WTA IgGs, anti-β-GlcNAc WTA-IgG was dominant in pooled human IgG fractions and in the intact sera of healthy adults and infants. These data demonstrate the importance of the WTA sugar conformation for human innate and adaptive immunity against S. aureus infection. Background: The exact staphylococcal antigenic determinants of anti-staphylococcal IgG and mannose-binding lectin (MBL) have not been determined. Results: The antigenic epitopes of the staphylococcal wall teichoic acid (WTA) for serum IgG and MBL are O-N-acetyl-d-glucosamine residues. Conclusion: The sugar moiety of WTA is an important molecular determinant in host responses to S. aureus. Significance: The results provide new insights into the host-pathogen interaction.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24045948</pmid><doi>10.1074/jbc.M113.509893</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-10, Vol.288 (43), p.30956-30968
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829409
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptive Immunity - physiology
Adult
Antibodies, Bacterial - immunology
Bacterial Proteins - genetics
Bacterial Proteins - immunology
Cell Wall
Cell Wall - chemistry
Cell Wall - immunology
Complement System
Epitopes - chemistry
Epitopes - immunology
Female
Gram-positive Bacteria
Host Defense
Host-Pathogen Interactions
Humans
Immunity, Innate - physiology
Immunoglobulin G - immunology
Immunology
Infant
Infant, Newborn
Innate Immunity
Leukocytes - immunology
Leukocytes - microbiology
Male
Mannose-Binding Lectin - blood
Mannose-Binding Lectin - immunology
Mutation
N-Acetylglucosaminyltransferases - genetics
N-Acetylglucosaminyltransferases - immunology
Phagocytosis - immunology
S. aureus
Staphylococcus aureus - chemistry
Staphylococcus aureus - enzymology
Staphylococcus aureus - immunology
Teichoic Acids - chemistry
Teichoic Acids - immunology
title Glycoepitopes of Staphylococcal Wall Teichoic Acid Govern Complement-mediated Opsonophagocytosis via Human Serum Antibody and Mannose-binding Lectin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A54%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycoepitopes%20of%20Staphylococcal%20Wall%20Teichoic%20Acid%20Govern%20Complement-mediated%20Opsonophagocytosis%20via%20Human%20Serum%20Antibody%20and%20Mannose-binding%20Lectin&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Kurokawa,%20Kenji&rft.date=2013-10-25&rft.volume=288&rft.issue=43&rft.spage=30956&rft.epage=30968&rft.pages=30956-30968&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.509893&rft_dat=%3Cproquest_pubme%3E1446874215%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446874215&rft_id=info:pmid/24045948&rft_els_id=S0021925820486971&rfr_iscdi=true