Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration

Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2013-11, Vol.288 (46), p.33156-33170
Hauptverfasser: Williams, Kendra A., Zhang, Mu, Xiang, Shengyan, Hu, Chen, Wu, Jheng-Yu, Zhang, Shengping, Ryan, Meagan, Cox, Adrienne D., Der, Channing J., Fang, Bin, Koomen, John, Haura, Eric, Bepler, Gerold, Nicosia, Santo V., Matthias, Patrick, Wang, Chuangui, Bai, Wenlong, Zhang, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33170
container_issue 46
container_start_page 33156
container_title The Journal of biological chemistry
container_volume 288
creator Williams, Kendra A.
Zhang, Mu
Xiang, Shengyan
Hu, Chen
Wu, Jheng-Yu
Zhang, Shengping
Ryan, Meagan
Cox, Adrienne D.
Der, Channing J.
Fang, Bin
Koomen, John
Haura, Eric
Bepler, Gerold
Nicosia, Santo V.
Matthias, Patrick
Wang, Chuangui
Bai, Wenlong
Zhang, Xiaohong
description Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular signal-regulated kinase (ERK) is associated with the microtubule cytoskeleton in cells. Yet, no connection between HDAC6 and ERK has been discovered. Here, for the first time, we reveal that ERK binds to and phosphorylates HDAC6 to promote cell migration via deacetylation of α-tubulin. We have identified two novel ERK-mediated phosphorylation sites: threonine 1031 and serine 1035 in HDAC6. Both sites were phosphorylated by ERK1 in vitro, whereas Ser-1035 was phosphorylated in response to the activation of EGFR-Ras-Raf-MEK-ERK signaling pathway in vivo. HDAC6-null mouse embryonic fibroblasts rescued by the nonphosphorylation mimicking mutant displayed significantly reduced cell migration compared with those rescued by the wild type. Consistently, the nonphosphorylation mimicking mutant exerted lower tubulin deacetylase activity in vivo compared with the wild type. These data indicate that ERK/HDAC6-mediated cell motility is through deacetylation of α-tubulin. Overall, our results suggest that HDAC6-mediated cell migration could be governed by EGFR-Ras-Raf-MEK-ERK signaling. Background: HDAC6 plays an important role in cell migration. Results: ERK interacts with and phosphorylates HDAC6 to promote cell migration. Conclusion: ERK signaling pathway promotes cell migration, in part, through phosphorylating HDAC6. Significance: Inhibition of HDAC6 activity as well as the EGFR-Ras-Raf-MEK-ERK signaling pathway may cooperatively reduce cell migration.
doi_str_mv 10.1074/jbc.M113.472506
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819544416</els_id><sourcerecordid>1459565596</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-d0857b7085e7d0e6801bd8332c13c1fac3f33cd0ed8d26f88a2466073b44031a3</originalsourceid><addsrcrecordid>eNp1kc1vFCEYxonR2LV69mY4bg-z5WNgmItJs11d0zYaVxNvhIF3dmlmhxXYxp79x2Xd2uhBDhB4Hn4vvA9CrymZUdLU57ednd1Qymd1wwSRT9CEEsUrLui3p2hCCKNVy4Q6QS9SuiVl1C19jk5YTVQrGJ-gn4sfORoLw7AfTMQrvx7NUEVYl20Gh6_8aBLg6eLz1Rn-tAlptwnx_qAlvPQphxHwJRRALofFKPF0eXkxl2fYZLyC6ItOCRc4B7zKfvsbi-elHr7x62iyD-NL9Kw3Q4JXD-sp-vpu8WW-rK4_vv8wv7iurCBtrhxRoumaMkPjCEhFaOcU58xSbmlvLO85t0VxyjHZK2VYLSVpeFfXhFPDT9HbI3e377bgLIzl64PeRb818V4H4_W_yug3eh3uNFespZIXwPQBEMP3PaSstz4demdGCPukaS1aIYVoZbGeH602hpQi9I9lKNGH6HSJTh-i08foyo03f7_u0f8nq2JojwYoPbrzEHWyHkYLzkewWbvg_wv_BdefqCw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459565596</pqid></control><display><type>article</type><title>Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Williams, Kendra A. ; Zhang, Mu ; Xiang, Shengyan ; Hu, Chen ; Wu, Jheng-Yu ; Zhang, Shengping ; Ryan, Meagan ; Cox, Adrienne D. ; Der, Channing J. ; Fang, Bin ; Koomen, John ; Haura, Eric ; Bepler, Gerold ; Nicosia, Santo V. ; Matthias, Patrick ; Wang, Chuangui ; Bai, Wenlong ; Zhang, Xiaohong</creator><creatorcontrib>Williams, Kendra A. ; Zhang, Mu ; Xiang, Shengyan ; Hu, Chen ; Wu, Jheng-Yu ; Zhang, Shengping ; Ryan, Meagan ; Cox, Adrienne D. ; Der, Channing J. ; Fang, Bin ; Koomen, John ; Haura, Eric ; Bepler, Gerold ; Nicosia, Santo V. ; Matthias, Patrick ; Wang, Chuangui ; Bai, Wenlong ; Zhang, Xiaohong</creatorcontrib><description>Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular signal-regulated kinase (ERK) is associated with the microtubule cytoskeleton in cells. Yet, no connection between HDAC6 and ERK has been discovered. Here, for the first time, we reveal that ERK binds to and phosphorylates HDAC6 to promote cell migration via deacetylation of α-tubulin. We have identified two novel ERK-mediated phosphorylation sites: threonine 1031 and serine 1035 in HDAC6. Both sites were phosphorylated by ERK1 in vitro, whereas Ser-1035 was phosphorylated in response to the activation of EGFR-Ras-Raf-MEK-ERK signaling pathway in vivo. HDAC6-null mouse embryonic fibroblasts rescued by the nonphosphorylation mimicking mutant displayed significantly reduced cell migration compared with those rescued by the wild type. Consistently, the nonphosphorylation mimicking mutant exerted lower tubulin deacetylase activity in vivo compared with the wild type. These data indicate that ERK/HDAC6-mediated cell motility is through deacetylation of α-tubulin. Overall, our results suggest that HDAC6-mediated cell migration could be governed by EGFR-Ras-Raf-MEK-ERK signaling. Background: HDAC6 plays an important role in cell migration. Results: ERK interacts with and phosphorylates HDAC6 to promote cell migration. Conclusion: ERK signaling pathway promotes cell migration, in part, through phosphorylating HDAC6. Significance: Inhibition of HDAC6 activity as well as the EGFR-Ras-Raf-MEK-ERK signaling pathway may cooperatively reduce cell migration.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M113.472506</identifier><identifier>PMID: 24089523</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acetylation ; Animals ; Cell Migration ; Cell Movement - physiology ; CHO Cells ; Cricetinae ; Cricetulus ; Embryo, Mammalian - cytology ; Embryo, Mammalian - metabolism ; Enzymology ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; ERK ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Histone Deacetylase ; Histone Deacetylase 6 ; Histone Deacetylases - genetics ; Histone Deacetylases - metabolism ; Humans ; MAP Kinase Signaling System - physiology ; MAP Kinases (MAPKs) ; Mice ; Mice, Mutant Strains ; Mitogen-Activated Protein Kinase 3 - genetics ; Mitogen-Activated Protein Kinase 3 - metabolism ; Protein Phosphorylation ; Tubulin - genetics ; Tubulin - metabolism</subject><ispartof>The Journal of biological chemistry, 2013-11, Vol.288 (46), p.33156-33170</ispartof><rights>2013 © 2013 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2013 by The American Society for Biochemistry and Molecular Biology, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-d0857b7085e7d0e6801bd8332c13c1fac3f33cd0ed8d26f88a2466073b44031a3</citedby><cites>FETCH-LOGICAL-c509t-d0857b7085e7d0e6801bd8332c13c1fac3f33cd0ed8d26f88a2466073b44031a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829163/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829163/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24089523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, Kendra A.</creatorcontrib><creatorcontrib>Zhang, Mu</creatorcontrib><creatorcontrib>Xiang, Shengyan</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Wu, Jheng-Yu</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Ryan, Meagan</creatorcontrib><creatorcontrib>Cox, Adrienne D.</creatorcontrib><creatorcontrib>Der, Channing J.</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Koomen, John</creatorcontrib><creatorcontrib>Haura, Eric</creatorcontrib><creatorcontrib>Bepler, Gerold</creatorcontrib><creatorcontrib>Nicosia, Santo V.</creatorcontrib><creatorcontrib>Matthias, Patrick</creatorcontrib><creatorcontrib>Wang, Chuangui</creatorcontrib><creatorcontrib>Bai, Wenlong</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><title>Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular signal-regulated kinase (ERK) is associated with the microtubule cytoskeleton in cells. Yet, no connection between HDAC6 and ERK has been discovered. Here, for the first time, we reveal that ERK binds to and phosphorylates HDAC6 to promote cell migration via deacetylation of α-tubulin. We have identified two novel ERK-mediated phosphorylation sites: threonine 1031 and serine 1035 in HDAC6. Both sites were phosphorylated by ERK1 in vitro, whereas Ser-1035 was phosphorylated in response to the activation of EGFR-Ras-Raf-MEK-ERK signaling pathway in vivo. HDAC6-null mouse embryonic fibroblasts rescued by the nonphosphorylation mimicking mutant displayed significantly reduced cell migration compared with those rescued by the wild type. Consistently, the nonphosphorylation mimicking mutant exerted lower tubulin deacetylase activity in vivo compared with the wild type. These data indicate that ERK/HDAC6-mediated cell motility is through deacetylation of α-tubulin. Overall, our results suggest that HDAC6-mediated cell migration could be governed by EGFR-Ras-Raf-MEK-ERK signaling. Background: HDAC6 plays an important role in cell migration. Results: ERK interacts with and phosphorylates HDAC6 to promote cell migration. Conclusion: ERK signaling pathway promotes cell migration, in part, through phosphorylating HDAC6. Significance: Inhibition of HDAC6 activity as well as the EGFR-Ras-Raf-MEK-ERK signaling pathway may cooperatively reduce cell migration.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Cell Migration</subject><subject>Cell Movement - physiology</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Embryo, Mammalian - cytology</subject><subject>Embryo, Mammalian - metabolism</subject><subject>Enzymology</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>ERK</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Histone Deacetylase</subject><subject>Histone Deacetylase 6</subject><subject>Histone Deacetylases - genetics</subject><subject>Histone Deacetylases - metabolism</subject><subject>Humans</subject><subject>MAP Kinase Signaling System - physiology</subject><subject>MAP Kinases (MAPKs)</subject><subject>Mice</subject><subject>Mice, Mutant Strains</subject><subject>Mitogen-Activated Protein Kinase 3 - genetics</subject><subject>Mitogen-Activated Protein Kinase 3 - metabolism</subject><subject>Protein Phosphorylation</subject><subject>Tubulin - genetics</subject><subject>Tubulin - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1vFCEYxonR2LV69mY4bg-z5WNgmItJs11d0zYaVxNvhIF3dmlmhxXYxp79x2Xd2uhBDhB4Hn4vvA9CrymZUdLU57ednd1Qymd1wwSRT9CEEsUrLui3p2hCCKNVy4Q6QS9SuiVl1C19jk5YTVQrGJ-gn4sfORoLw7AfTMQrvx7NUEVYl20Gh6_8aBLg6eLz1Rn-tAlptwnx_qAlvPQphxHwJRRALofFKPF0eXkxl2fYZLyC6ItOCRc4B7zKfvsbi-elHr7x62iyD-NL9Kw3Q4JXD-sp-vpu8WW-rK4_vv8wv7iurCBtrhxRoumaMkPjCEhFaOcU58xSbmlvLO85t0VxyjHZK2VYLSVpeFfXhFPDT9HbI3e377bgLIzl64PeRb818V4H4_W_yug3eh3uNFespZIXwPQBEMP3PaSstz4demdGCPukaS1aIYVoZbGeH602hpQi9I9lKNGH6HSJTh-i08foyo03f7_u0f8nq2JojwYoPbrzEHWyHkYLzkewWbvg_wv_BdefqCw</recordid><startdate>20131115</startdate><enddate>20131115</enddate><creator>Williams, Kendra A.</creator><creator>Zhang, Mu</creator><creator>Xiang, Shengyan</creator><creator>Hu, Chen</creator><creator>Wu, Jheng-Yu</creator><creator>Zhang, Shengping</creator><creator>Ryan, Meagan</creator><creator>Cox, Adrienne D.</creator><creator>Der, Channing J.</creator><creator>Fang, Bin</creator><creator>Koomen, John</creator><creator>Haura, Eric</creator><creator>Bepler, Gerold</creator><creator>Nicosia, Santo V.</creator><creator>Matthias, Patrick</creator><creator>Wang, Chuangui</creator><creator>Bai, Wenlong</creator><creator>Zhang, Xiaohong</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131115</creationdate><title>Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration</title><author>Williams, Kendra A. ; Zhang, Mu ; Xiang, Shengyan ; Hu, Chen ; Wu, Jheng-Yu ; Zhang, Shengping ; Ryan, Meagan ; Cox, Adrienne D. ; Der, Channing J. ; Fang, Bin ; Koomen, John ; Haura, Eric ; Bepler, Gerold ; Nicosia, Santo V. ; Matthias, Patrick ; Wang, Chuangui ; Bai, Wenlong ; Zhang, Xiaohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-d0857b7085e7d0e6801bd8332c13c1fac3f33cd0ed8d26f88a2466073b44031a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Cell Migration</topic><topic>Cell Movement - physiology</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Embryo, Mammalian - cytology</topic><topic>Embryo, Mammalian - metabolism</topic><topic>Enzymology</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>ERK</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Histone Deacetylase</topic><topic>Histone Deacetylase 6</topic><topic>Histone Deacetylases - genetics</topic><topic>Histone Deacetylases - metabolism</topic><topic>Humans</topic><topic>MAP Kinase Signaling System - physiology</topic><topic>MAP Kinases (MAPKs)</topic><topic>Mice</topic><topic>Mice, Mutant Strains</topic><topic>Mitogen-Activated Protein Kinase 3 - genetics</topic><topic>Mitogen-Activated Protein Kinase 3 - metabolism</topic><topic>Protein Phosphorylation</topic><topic>Tubulin - genetics</topic><topic>Tubulin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Kendra A.</creatorcontrib><creatorcontrib>Zhang, Mu</creatorcontrib><creatorcontrib>Xiang, Shengyan</creatorcontrib><creatorcontrib>Hu, Chen</creatorcontrib><creatorcontrib>Wu, Jheng-Yu</creatorcontrib><creatorcontrib>Zhang, Shengping</creatorcontrib><creatorcontrib>Ryan, Meagan</creatorcontrib><creatorcontrib>Cox, Adrienne D.</creatorcontrib><creatorcontrib>Der, Channing J.</creatorcontrib><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Koomen, John</creatorcontrib><creatorcontrib>Haura, Eric</creatorcontrib><creatorcontrib>Bepler, Gerold</creatorcontrib><creatorcontrib>Nicosia, Santo V.</creatorcontrib><creatorcontrib>Matthias, Patrick</creatorcontrib><creatorcontrib>Wang, Chuangui</creatorcontrib><creatorcontrib>Bai, Wenlong</creatorcontrib><creatorcontrib>Zhang, Xiaohong</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Kendra A.</au><au>Zhang, Mu</au><au>Xiang, Shengyan</au><au>Hu, Chen</au><au>Wu, Jheng-Yu</au><au>Zhang, Shengping</au><au>Ryan, Meagan</au><au>Cox, Adrienne D.</au><au>Der, Channing J.</au><au>Fang, Bin</au><au>Koomen, John</au><au>Haura, Eric</au><au>Bepler, Gerold</au><au>Nicosia, Santo V.</au><au>Matthias, Patrick</au><au>Wang, Chuangui</au><au>Bai, Wenlong</au><au>Zhang, Xiaohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2013-11-15</date><risdate>2013</risdate><volume>288</volume><issue>46</issue><spage>33156</spage><epage>33170</epage><pages>33156-33170</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Histone deacetylase 6 (HDAC6) is well known for its ability to promote cell migration through deacetylation of its cytoplasmic substrates such as α-tubulin. However, how HDAC6 itself is regulated to control cell motility remains elusive. Previous studies have shown that one third of extracellular signal-regulated kinase (ERK) is associated with the microtubule cytoskeleton in cells. Yet, no connection between HDAC6 and ERK has been discovered. Here, for the first time, we reveal that ERK binds to and phosphorylates HDAC6 to promote cell migration via deacetylation of α-tubulin. We have identified two novel ERK-mediated phosphorylation sites: threonine 1031 and serine 1035 in HDAC6. Both sites were phosphorylated by ERK1 in vitro, whereas Ser-1035 was phosphorylated in response to the activation of EGFR-Ras-Raf-MEK-ERK signaling pathway in vivo. HDAC6-null mouse embryonic fibroblasts rescued by the nonphosphorylation mimicking mutant displayed significantly reduced cell migration compared with those rescued by the wild type. Consistently, the nonphosphorylation mimicking mutant exerted lower tubulin deacetylase activity in vivo compared with the wild type. These data indicate that ERK/HDAC6-mediated cell motility is through deacetylation of α-tubulin. Overall, our results suggest that HDAC6-mediated cell migration could be governed by EGFR-Ras-Raf-MEK-ERK signaling. Background: HDAC6 plays an important role in cell migration. Results: ERK interacts with and phosphorylates HDAC6 to promote cell migration. Conclusion: ERK signaling pathway promotes cell migration, in part, through phosphorylating HDAC6. Significance: Inhibition of HDAC6 activity as well as the EGFR-Ras-Raf-MEK-ERK signaling pathway may cooperatively reduce cell migration.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24089523</pmid><doi>10.1074/jbc.M113.472506</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2013-11, Vol.288 (46), p.33156-33170
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829163
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acetylation
Animals
Cell Migration
Cell Movement - physiology
CHO Cells
Cricetinae
Cricetulus
Embryo, Mammalian - cytology
Embryo, Mammalian - metabolism
Enzymology
ErbB Receptors - genetics
ErbB Receptors - metabolism
ERK
Fibroblasts - cytology
Fibroblasts - metabolism
Histone Deacetylase
Histone Deacetylase 6
Histone Deacetylases - genetics
Histone Deacetylases - metabolism
Humans
MAP Kinase Signaling System - physiology
MAP Kinases (MAPKs)
Mice
Mice, Mutant Strains
Mitogen-Activated Protein Kinase 3 - genetics
Mitogen-Activated Protein Kinase 3 - metabolism
Protein Phosphorylation
Tubulin - genetics
Tubulin - metabolism
title Extracellular Signal-regulated Kinase (ERK) Phosphorylates Histone Deacetylase 6 (HDAC6) at Serine 1035 to Stimulate Cell Migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracellular%20Signal-regulated%20Kinase%20(ERK)%20Phosphorylates%20Histone%20Deacetylase%206%20(HDAC6)%20at%20Serine%201035%20to%20Stimulate%20Cell%20Migration&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Williams,%20Kendra%20A.&rft.date=2013-11-15&rft.volume=288&rft.issue=46&rft.spage=33156&rft.epage=33170&rft.pages=33156-33170&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M113.472506&rft_dat=%3Cproquest_pubme%3E1459565596%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459565596&rft_id=info:pmid/24089523&rft_els_id=S0021925819544416&rfr_iscdi=true