Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes
Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3‐L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis h...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2010-06, Vol.14 (6b), p.1683-1692 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1692 |
---|---|
container_issue | 6b |
container_start_page | 1683 |
container_title | Journal of cellular and molecular medicine |
container_volume | 14 |
creator | Vuohelainen, Susanna Pirinen, Eija Cerrada‐Gimenez, Marc Keinänen, Tuomo A. Uimari, Anne Pietilä, Marko Khomutov, Alex R. Jänne, Juhani Alhonen, Leena |
description | Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3‐L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3‐L1 cells by using (S’)‐ and (R’)‐ isomers of α‐methylspermidine and (S,S’)‐, (R,S)‐ and (R,R’)‐diastereomers of α,ω‐bismethylspermine. Polyamine depletion caused by α‐difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator‐activated receptor γ and CCAAT/enhancer binding protein α. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)‐methylspermidine was able to fully support cell growth after extended treatment with α‐DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome. |
doi_str_mv | 10.1111/j.1582-4934.2009.00808.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161428551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5948-451128d9fe83686e0827e21d3604de8d3b1363ab416bf314bcbf83c5aa8d4dc43</originalsourceid><addsrcrecordid>eNqNkc-uEyEUh4nReP_oKxii644wBxhYaGIavWp648K6JjCA0kyHEaZ6u_MRfEafRGqbqy5MZMMJ5zu_HPIhhClpaD1PNw3lsl0wBaxpCVENIZLI5uYOOr9t3D3VVII8QxelbAgBQUHdR2dUcZCs4-do_X7yeRtdHD2OBcfRxTL5sRg71IcRuxiCz36co5ljGnEKGNbw49v3FcUh2pzsYMpc8JywcXFK_X725QG6F8xQ_MPTfYk-vHq5Xr5erN5dvVm-WC16rphcME5pK50KXoKQwhPZdr6lDgRhzksHloIAYxkVNgBltrdBQs-NkY65nsElen7MnXZ2611f18xm0FOOW5P3Opmo_-6M8ZP-mL5okK0iQGrA41NATp93vsx6k3Z5rDvrjneCU666Cj35FwSk40pQoVSl5JHqcyol-3C7BiX6IE1v9MGHPrjRB2n6lzR9U0cf_fmN34MnSxV4dgS-xsHv_ztYv11eX9cKfgJwQqb5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075961699</pqid></control><display><type>article</type><title>Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes</title><source>Wiley Online Library (Open Access Collection)</source><creator>Vuohelainen, Susanna ; Pirinen, Eija ; Cerrada‐Gimenez, Marc ; Keinänen, Tuomo A. ; Uimari, Anne ; Pietilä, Marko ; Khomutov, Alex R. ; Jänne, Juhani ; Alhonen, Leena</creator><creatorcontrib>Vuohelainen, Susanna ; Pirinen, Eija ; Cerrada‐Gimenez, Marc ; Keinänen, Tuomo A. ; Uimari, Anne ; Pietilä, Marko ; Khomutov, Alex R. ; Jänne, Juhani ; Alhonen, Leena</creatorcontrib><description>Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3‐L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3‐L1 cells by using (S’)‐ and (R’)‐ isomers of α‐methylspermidine and (S,S’)‐, (R,S)‐ and (R,R’)‐diastereomers of α,ω‐bismethylspermine. Polyamine depletion caused by α‐difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator‐activated receptor γ and CCAAT/enhancer binding protein α. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)‐methylspermidine was able to fully support cell growth after extended treatment with α‐DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00808.x</identifier><identifier>PMID: 19538475</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>3T3-L1 Cells ; Adipocytes ; Adipocytes - cytology ; Adipocytes - drug effects ; Adipocytes - metabolism ; Adipogenesis ; Adipogenesis - drug effects ; Adipogenesis - genetics ; Animals ; Antibodies ; Binding sites ; Body fat ; CCAAT/enhancer-binding protein ; Cell differentiation ; Cell Differentiation - drug effects ; Cell growth ; Cell Proliferation - drug effects ; Cell Shape - drug effects ; Diastereoisomers ; Eflornithine ; Eflornithine - pharmacology ; fibroblast ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gene expression ; Gene Expression Regulation - drug effects ; Glucose ; Glucose Transporter Type 4 - metabolism ; hypusine ; Insulin resistance ; Isomerism ; Isomers ; Laboratories ; Lipid Metabolism - drug effects ; Metabolic syndrome ; Metabolism ; Mice ; Organ Specificity - drug effects ; Organ Specificity - genetics ; Original ; Ornithine decarboxylase ; Peroxisome proliferator-activated receptors ; polyamine ; Polyamines ; Proteins ; Putrescine - analogs & derivatives ; Putrescine - pharmacology ; Software ; Spermidine ; Spermidine - analogs & derivatives ; Spermidine - pharmacology ; Spermine ; Time Factors ; Transcription factors</subject><ispartof>Journal of cellular and molecular medicine, 2010-06, Vol.14 (6b), p.1683-1692</ispartof><rights>2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>2010. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright Blackwell Publishing Ltd. Jun 2010</rights><rights>2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5948-451128d9fe83686e0827e21d3604de8d3b1363ab416bf314bcbf83c5aa8d4dc43</citedby><cites>FETCH-LOGICAL-c5948-451128d9fe83686e0827e21d3604de8d3b1363ab416bf314bcbf83c5aa8d4dc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829030/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829030/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00808.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19538475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vuohelainen, Susanna</creatorcontrib><creatorcontrib>Pirinen, Eija</creatorcontrib><creatorcontrib>Cerrada‐Gimenez, Marc</creatorcontrib><creatorcontrib>Keinänen, Tuomo A.</creatorcontrib><creatorcontrib>Uimari, Anne</creatorcontrib><creatorcontrib>Pietilä, Marko</creatorcontrib><creatorcontrib>Khomutov, Alex R.</creatorcontrib><creatorcontrib>Jänne, Juhani</creatorcontrib><creatorcontrib>Alhonen, Leena</creatorcontrib><title>Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3‐L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3‐L1 cells by using (S’)‐ and (R’)‐ isomers of α‐methylspermidine and (S,S’)‐, (R,S)‐ and (R,R’)‐diastereomers of α,ω‐bismethylspermine. Polyamine depletion caused by α‐difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator‐activated receptor γ and CCAAT/enhancer binding protein α. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)‐methylspermidine was able to fully support cell growth after extended treatment with α‐DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome.</description><subject>3T3-L1 Cells</subject><subject>Adipocytes</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - drug effects</subject><subject>Adipocytes - metabolism</subject><subject>Adipogenesis</subject><subject>Adipogenesis - drug effects</subject><subject>Adipogenesis - genetics</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Binding sites</subject><subject>Body fat</subject><subject>CCAAT/enhancer-binding protein</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell growth</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Shape - drug effects</subject><subject>Diastereoisomers</subject><subject>Eflornithine</subject><subject>Eflornithine - pharmacology</subject><subject>fibroblast</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Glucose</subject><subject>Glucose Transporter Type 4 - metabolism</subject><subject>hypusine</subject><subject>Insulin resistance</subject><subject>Isomerism</subject><subject>Isomers</subject><subject>Laboratories</subject><subject>Lipid Metabolism - drug effects</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Organ Specificity - drug effects</subject><subject>Organ Specificity - genetics</subject><subject>Original</subject><subject>Ornithine decarboxylase</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>polyamine</subject><subject>Polyamines</subject><subject>Proteins</subject><subject>Putrescine - analogs & derivatives</subject><subject>Putrescine - pharmacology</subject><subject>Software</subject><subject>Spermidine</subject><subject>Spermidine - analogs & derivatives</subject><subject>Spermidine - pharmacology</subject><subject>Spermine</subject><subject>Time Factors</subject><subject>Transcription factors</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc-uEyEUh4nReP_oKxii644wBxhYaGIavWp648K6JjCA0kyHEaZ6u_MRfEafRGqbqy5MZMMJ5zu_HPIhhClpaD1PNw3lsl0wBaxpCVENIZLI5uYOOr9t3D3VVII8QxelbAgBQUHdR2dUcZCs4-do_X7yeRtdHD2OBcfRxTL5sRg71IcRuxiCz36co5ljGnEKGNbw49v3FcUh2pzsYMpc8JywcXFK_X725QG6F8xQ_MPTfYk-vHq5Xr5erN5dvVm-WC16rphcME5pK50KXoKQwhPZdr6lDgRhzksHloIAYxkVNgBltrdBQs-NkY65nsElen7MnXZ2611f18xm0FOOW5P3Opmo_-6M8ZP-mL5okK0iQGrA41NATp93vsx6k3Z5rDvrjneCU666Cj35FwSk40pQoVSl5JHqcyol-3C7BiX6IE1v9MGHPrjRB2n6lzR9U0cf_fmN34MnSxV4dgS-xsHv_ztYv11eX9cKfgJwQqb5</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Vuohelainen, Susanna</creator><creator>Pirinen, Eija</creator><creator>Cerrada‐Gimenez, Marc</creator><creator>Keinänen, Tuomo A.</creator><creator>Uimari, Anne</creator><creator>Pietilä, Marko</creator><creator>Khomutov, Alex R.</creator><creator>Jänne, Juhani</creator><creator>Alhonen, Leena</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>201006</creationdate><title>Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes</title><author>Vuohelainen, Susanna ; Pirinen, Eija ; Cerrada‐Gimenez, Marc ; Keinänen, Tuomo A. ; Uimari, Anne ; Pietilä, Marko ; Khomutov, Alex R. ; Jänne, Juhani ; Alhonen, Leena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5948-451128d9fe83686e0827e21d3604de8d3b1363ab416bf314bcbf83c5aa8d4dc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3T3-L1 Cells</topic><topic>Adipocytes</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - drug effects</topic><topic>Adipocytes - metabolism</topic><topic>Adipogenesis</topic><topic>Adipogenesis - drug effects</topic><topic>Adipogenesis - genetics</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Binding sites</topic><topic>Body fat</topic><topic>CCAAT/enhancer-binding protein</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell growth</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Shape - drug effects</topic><topic>Diastereoisomers</topic><topic>Eflornithine</topic><topic>Eflornithine - pharmacology</topic><topic>fibroblast</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Glucose</topic><topic>Glucose Transporter Type 4 - metabolism</topic><topic>hypusine</topic><topic>Insulin resistance</topic><topic>Isomerism</topic><topic>Isomers</topic><topic>Laboratories</topic><topic>Lipid Metabolism - drug effects</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Organ Specificity - drug effects</topic><topic>Organ Specificity - genetics</topic><topic>Original</topic><topic>Ornithine decarboxylase</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>polyamine</topic><topic>Polyamines</topic><topic>Proteins</topic><topic>Putrescine - analogs & derivatives</topic><topic>Putrescine - pharmacology</topic><topic>Software</topic><topic>Spermidine</topic><topic>Spermidine - analogs & derivatives</topic><topic>Spermidine - pharmacology</topic><topic>Spermine</topic><topic>Time Factors</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vuohelainen, Susanna</creatorcontrib><creatorcontrib>Pirinen, Eija</creatorcontrib><creatorcontrib>Cerrada‐Gimenez, Marc</creatorcontrib><creatorcontrib>Keinänen, Tuomo A.</creatorcontrib><creatorcontrib>Uimari, Anne</creatorcontrib><creatorcontrib>Pietilä, Marko</creatorcontrib><creatorcontrib>Khomutov, Alex R.</creatorcontrib><creatorcontrib>Jänne, Juhani</creatorcontrib><creatorcontrib>Alhonen, Leena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vuohelainen, Susanna</au><au>Pirinen, Eija</au><au>Cerrada‐Gimenez, Marc</au><au>Keinänen, Tuomo A.</au><au>Uimari, Anne</au><au>Pietilä, Marko</au><au>Khomutov, Alex R.</au><au>Jänne, Juhani</au><au>Alhonen, Leena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2010-06</date><risdate>2010</risdate><volume>14</volume><issue>6b</issue><spage>1683</spage><epage>1692</epage><pages>1683-1692</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Impaired adipogenesis has been shown to predispose to disturbed adipocyte function and development of metabolic abnormalities. Previous studies indicate that polyamines are essential in the adipogenesis in 3T3‐L1 fibroblasts. However, the specific roles of individual polyamines during adipogenesis have remained ambiguous as the natural polyamines are readily interconvertible inside the cells. Here, we have defined the roles of spermidine and spermine in adipogenesis of 3T3‐L1 cells by using (S’)‐ and (R’)‐ isomers of α‐methylspermidine and (S,S’)‐, (R,S)‐ and (R,R’)‐diastereomers of α,ω‐bismethylspermine. Polyamine depletion caused by α‐difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase, prevented adipocyte differentiation by suppressing the expression of its key regulators, peroxisome proliferator‐activated receptor γ and CCAAT/enhancer binding protein α. Adipogenesis was restored by supplementation of methylspermidine isomers but not of bismethylspermine diastereomers. Although both spermidine analogues supported adipocyte differentiation only (S)‐methylspermidine was able to fully support cell growth after extended treatment with α‐DFMO. The distinction between the spermidine analogues in maintaining growth was found to be in their different capability to maintain functional hypusine synthesis. However, the differential ability of spermidine analogues to support hypusine synthesis did not correlate with their ability to support differentiation. Our results show that spermidine, but not spermine, is essential for adipogenesis and that the requirement of spermidine for adipogenesis is not strictly associated with hypusine modification. The involvement of polyamines in the regulation of adipogenesis may offer a potential application for the treatment of dysfunctional adipocytes in patients with obesity and metabolic syndrome.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19538475</pmid><doi>10.1111/j.1582-4934.2009.00808.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2010-06, Vol.14 (6b), p.1683-1692 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3829030 |
source | Wiley Online Library (Open Access Collection) |
subjects | 3T3-L1 Cells Adipocytes Adipocytes - cytology Adipocytes - drug effects Adipocytes - metabolism Adipogenesis Adipogenesis - drug effects Adipogenesis - genetics Animals Antibodies Binding sites Body fat CCAAT/enhancer-binding protein Cell differentiation Cell Differentiation - drug effects Cell growth Cell Proliferation - drug effects Cell Shape - drug effects Diastereoisomers Eflornithine Eflornithine - pharmacology fibroblast Fibroblasts Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism Gene expression Gene Expression Regulation - drug effects Glucose Glucose Transporter Type 4 - metabolism hypusine Insulin resistance Isomerism Isomers Laboratories Lipid Metabolism - drug effects Metabolic syndrome Metabolism Mice Organ Specificity - drug effects Organ Specificity - genetics Original Ornithine decarboxylase Peroxisome proliferator-activated receptors polyamine Polyamines Proteins Putrescine - analogs & derivatives Putrescine - pharmacology Software Spermidine Spermidine - analogs & derivatives Spermidine - pharmacology Spermine Time Factors Transcription factors |
title | Spermidine is indispensable in differentiation of 3T3‐L1 fibroblasts to adipocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spermidine%20is%20indispensable%20in%20differentiation%20of%203T3%E2%80%90L1%20fibroblasts%20to%20adipocytes&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Vuohelainen,%20Susanna&rft.date=2010-06&rft.volume=14&rft.issue=6b&rft.spage=1683&rft.epage=1692&rft.pages=1683-1692&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00808.x&rft_dat=%3Cproquest_24P%3E2161428551%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075961699&rft_id=info:pmid/19538475&rfr_iscdi=true |