Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay
The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2013-10, Vol.14 (1), p.308-308, Article 308 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 1 |
container_start_page | 308 |
container_title | BMC bioinformatics |
container_volume | 14 |
creator | Pau, Gregoire Walter, Thomas Neumann, Beate Hériché, Jean-Karim Ellenberg, Jan Huber, Wolfgang |
description | The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification, followed by description of population frequencies and temporal distribution of cellular states through event-order maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the relatively low image sampling frequency, and to focus on effects that could be discerned from population-level behaviour.
Here, we present a variation of this approach that employs explicit modelling by dynamic differential equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest, polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the durations of the interphase or mitosis phases.
We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described population-based modelling method might be applicable to other large-scale cell-based assays with temporal readout when only population-level measures are available. |
doi_str_mv | 10.1186/1471-2105-14-308 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534515560</galeid><sourcerecordid>A534515560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-bb7a26a351dff34e3b509d31eaaeabe968c834294b2993aa6bcfd51ea4f6ec9c3</originalsourceid><addsrcrecordid>eNptkk1v1DAQhiNERUvhzglF4gISKf5M4gvSqkBbaUWlAmfLcSZZV4m9xMnC_nsm2nbbrZAteWw_79gev0nyhpIzSsv8ExUFzRglMqMi46R8lpzsl54_io-TlzHeEkKLksgXyTETlNOiKE6S6y9bb3pnTZf2oYauc75NQ5OuV-DDuF1DTJ1PTdritIfsj6shvfm-cGnnNpBZFKSuN-2sMjGa7avkqDFdhNd342ny69vXn-eX2fL64up8scyszNmYVVVhWG64pHXTcAG8kkTVnIIxYCpQeWlLLpgSFVOKG5NXtqklbosmB6ssP00-7_Kup6qH2oIfB9Pp9YC3GbY6GKcPd7xb6TZsNC9ZoTjDBB93CVZPZJeLpXY-wtBrQsoSu9pQxN_fnTeE3xPEUfcuzs83HsIUNRWK5EpSViL67gl6G6bBYzWQEoqrgin-QLWmAzywCXhNOyfVC8mFpFLmBKmz_1DYasBPCx4ah-sHgg8HAmRG-Du2ZopRX_24OWTJjrVDiHGAZl8HSvTsLz0bSM8Gwkijv1Dy9nHZ94J7Q_F_gnHIeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449397293</pqid></control><display><type>article</type><title>Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Pau, Gregoire ; Walter, Thomas ; Neumann, Beate ; Hériché, Jean-Karim ; Ellenberg, Jan ; Huber, Wolfgang</creator><creatorcontrib>Pau, Gregoire ; Walter, Thomas ; Neumann, Beate ; Hériché, Jean-Karim ; Ellenberg, Jan ; Huber, Wolfgang</creatorcontrib><description>The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification, followed by description of population frequencies and temporal distribution of cellular states through event-order maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the relatively low image sampling frequency, and to focus on effects that could be discerned from population-level behaviour.
Here, we present a variation of this approach that employs explicit modelling by dynamic differential equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest, polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the durations of the interphase or mitosis phases.
We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described population-based modelling method might be applicable to other large-scale cell-based assays with temporal readout when only population-level measures are available.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/1471-2105-14-308</identifier><identifier>PMID: 24131777</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Apoptosis ; Biochemistry, Molecular Biology ; Bioinformatics ; Biological assay ; Cell cycle ; Cell Cycle - genetics ; Cell death ; Cell division ; Computational Biology - methods ; Computer Science ; Cost estimates ; Experiments ; Genes ; Genomes ; Genomics ; HeLa Cells ; Humans ; Image Processing, Computer-Assisted - methods ; Life Sciences ; Methods ; Microscopy ; Mitosis - genetics ; Models, Biological ; Phenotype ; Population ; Proteins ; Quality control ; Quantitative Methods ; RNA Interference ; RNA, Small Interfering - genetics ; RNA, Small Interfering - metabolism ; Software</subject><ispartof>BMC bioinformatics, 2013-10, Vol.14 (1), p.308-308, Article 308</ispartof><rights>COPYRIGHT 2013 BioMed Central Ltd.</rights><rights>2013 Pau et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2013 Pau et al.; licensee BioMed Central Ltd. 2013 Pau et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-bb7a26a351dff34e3b509d31eaaeabe968c834294b2993aa6bcfd51ea4f6ec9c3</citedby><cites>FETCH-LOGICAL-c562t-bb7a26a351dff34e3b509d31eaaeabe968c834294b2993aa6bcfd51ea4f6ec9c3</cites><orcidid>0000-0001-7419-7879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827932/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24131777$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-00880889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pau, Gregoire</creatorcontrib><creatorcontrib>Walter, Thomas</creatorcontrib><creatorcontrib>Neumann, Beate</creatorcontrib><creatorcontrib>Hériché, Jean-Karim</creatorcontrib><creatorcontrib>Ellenberg, Jan</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><title>Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification, followed by description of population frequencies and temporal distribution of cellular states through event-order maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the relatively low image sampling frequency, and to focus on effects that could be discerned from population-level behaviour.
Here, we present a variation of this approach that employs explicit modelling by dynamic differential equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest, polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the durations of the interphase or mitosis phases.
We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described population-based modelling method might be applicable to other large-scale cell-based assays with temporal readout when only population-level measures are available.</description><subject>Analysis</subject><subject>Apoptosis</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Biological assay</subject><subject>Cell cycle</subject><subject>Cell Cycle - genetics</subject><subject>Cell death</subject><subject>Cell division</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Cost estimates</subject><subject>Experiments</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Mitosis - genetics</subject><subject>Models, Biological</subject><subject>Phenotype</subject><subject>Population</subject><subject>Proteins</subject><subject>Quality control</subject><subject>Quantitative Methods</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Software</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkk1v1DAQhiNERUvhzglF4gISKf5M4gvSqkBbaUWlAmfLcSZZV4m9xMnC_nsm2nbbrZAteWw_79gev0nyhpIzSsv8ExUFzRglMqMi46R8lpzsl54_io-TlzHeEkKLksgXyTETlNOiKE6S6y9bb3pnTZf2oYauc75NQ5OuV-DDuF1DTJ1PTdritIfsj6shvfm-cGnnNpBZFKSuN-2sMjGa7avkqDFdhNd342ny69vXn-eX2fL64up8scyszNmYVVVhWG64pHXTcAG8kkTVnIIxYCpQeWlLLpgSFVOKG5NXtqklbosmB6ssP00-7_Kup6qH2oIfB9Pp9YC3GbY6GKcPd7xb6TZsNC9ZoTjDBB93CVZPZJeLpXY-wtBrQsoSu9pQxN_fnTeE3xPEUfcuzs83HsIUNRWK5EpSViL67gl6G6bBYzWQEoqrgin-QLWmAzywCXhNOyfVC8mFpFLmBKmz_1DYasBPCx4ah-sHgg8HAmRG-Du2ZopRX_24OWTJjrVDiHGAZl8HSvTsLz0bSM8Gwkijv1Dy9nHZ94J7Q_F_gnHIeg</recordid><startdate>20131016</startdate><enddate>20131016</enddate><creator>Pau, Gregoire</creator><creator>Walter, Thomas</creator><creator>Neumann, Beate</creator><creator>Hériché, Jean-Karim</creator><creator>Ellenberg, Jan</creator><creator>Huber, Wolfgang</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7419-7879</orcidid></search><sort><creationdate>20131016</creationdate><title>Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay</title><author>Pau, Gregoire ; Walter, Thomas ; Neumann, Beate ; Hériché, Jean-Karim ; Ellenberg, Jan ; Huber, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-bb7a26a351dff34e3b509d31eaaeabe968c834294b2993aa6bcfd51ea4f6ec9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Apoptosis</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Biological assay</topic><topic>Cell cycle</topic><topic>Cell Cycle - genetics</topic><topic>Cell death</topic><topic>Cell division</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Cost estimates</topic><topic>Experiments</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Mitosis - genetics</topic><topic>Models, Biological</topic><topic>Phenotype</topic><topic>Population</topic><topic>Proteins</topic><topic>Quality control</topic><topic>Quantitative Methods</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pau, Gregoire</creatorcontrib><creatorcontrib>Walter, Thomas</creatorcontrib><creatorcontrib>Neumann, Beate</creatorcontrib><creatorcontrib>Hériché, Jean-Karim</creatorcontrib><creatorcontrib>Ellenberg, Jan</creatorcontrib><creatorcontrib>Huber, Wolfgang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pau, Gregoire</au><au>Walter, Thomas</au><au>Neumann, Beate</au><au>Hériché, Jean-Karim</au><au>Ellenberg, Jan</au><au>Huber, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2013-10-16</date><risdate>2013</risdate><volume>14</volume><issue>1</issue><spage>308</spage><epage>308</epage><pages>308-308</pages><artnum>308</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>The combination of time-lapse imaging of live cells with high-throughput perturbation assays is a powerful tool for genetics and cell biology. The Mitocheck project employed this technique to associate thousands of genes with transient biological phenotypes in cell division, cell death and migration. The original analysis of these data proceeded by assigning nuclear morphologies to cells at each time-point using automated image classification, followed by description of population frequencies and temporal distribution of cellular states through event-order maps. One of the choices made by that analysis was not to rely on temporal tracking of the individual cells, due to the relatively low image sampling frequency, and to focus on effects that could be discerned from population-level behaviour.
Here, we present a variation of this approach that employs explicit modelling by dynamic differential equations of the cellular state populations. Model fitting to the time course data allowed reliable estimation of the penetrance and time of appearance of four types of disruption of the cell cycle: quiescence, mitotic arrest, polynucleation and cell death. Model parameters yielded estimates of the duration of the interphase and mitosis phases. We identified 2190 siRNAs that induced a disruption of the cell cycle at reproducible times, or increased the durations of the interphase or mitosis phases.
We quantified the dynamic effects of the siRNAs and compiled them as a resource that can be used to characterize the role of their target genes in cell death, mitosis and cell cycle regulation. The described population-based modelling method might be applicable to other large-scale cell-based assays with temporal readout when only population-level measures are available.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>24131777</pmid><doi>10.1186/1471-2105-14-308</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7419-7879</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2013-10, Vol.14 (1), p.308-308, Article 308 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827932 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; PubMed Central Open Access; PubMed Central; Springer Nature OA/Free Journals |
subjects | Analysis Apoptosis Biochemistry, Molecular Biology Bioinformatics Biological assay Cell cycle Cell Cycle - genetics Cell death Cell division Computational Biology - methods Computer Science Cost estimates Experiments Genes Genomes Genomics HeLa Cells Humans Image Processing, Computer-Assisted - methods Life Sciences Methods Microscopy Mitosis - genetics Models, Biological Phenotype Population Proteins Quality control Quantitative Methods RNA Interference RNA, Small Interfering - genetics RNA, Small Interfering - metabolism Software |
title | Dynamical modelling of phenotypes in a genome-wide RNAi live-cell imaging assay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T11%3A51%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20modelling%20of%20phenotypes%20in%20a%20genome-wide%20RNAi%20live-cell%20imaging%20assay&rft.jtitle=BMC%20bioinformatics&rft.au=Pau,%20Gregoire&rft.date=2013-10-16&rft.volume=14&rft.issue=1&rft.spage=308&rft.epage=308&rft.pages=308-308&rft.artnum=308&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/1471-2105-14-308&rft_dat=%3Cgale_pubme%3EA534515560%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449397293&rft_id=info:pmid/24131777&rft_galeid=A534515560&rfr_iscdi=true |