Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior

The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calcified tissue international 2013-12, Vol.93 (6), p.526-539
Hauptverfasser: Rumpler, M., Würger, T., Roschger, P., Zwettler, E., Sturmlechner, I., Altmann, P., Fratzl, P., Rogers, M. J., Klaushofer, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 539
container_issue 6
container_start_page 526
container_title Calcified tissue international
container_volume 93
creator Rumpler, M.
Würger, T.
Roschger, P.
Zwettler, E.
Sturmlechner, I.
Altmann, P.
Fratzl, P.
Rogers, M. J.
Klaushofer, K.
description The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 μm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm 2 ) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.
doi_str_mv 10.1007/s00223-013-9786-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1490719426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-18d94b3110b5fb4a7d061da9623f14bdce351d31e57d4503071611ed83435c133</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhoNY7Lr6A7yRgDfejObkc-KF0K5WC5WCVPEuZGYy3dSZZE1mC_33zXRraQuCVyGc533Px4vQKyDvgBD1PhNCKasIsEqrWlbqCVoAZ7QiNVVP0YKAgkpL9WsfPc_5ghDgUspnaJ_yWUj1Av0-zZOL7WDzlHEM-DAGh23o8CcXJh_wccA__ZTiB_zNtWsbfB5x7PFZsn7ARzGNdvJFNitWcdzY5HP5FuK7yzFtboqHbm0vfUwv0F5vh-xe3r5L9OPo89nqa3Vy-uV4dXBStULqqYK607xhAKQRfcOt6oiEzmpJWQ-86VrHBHQMnFAdF4QRBRLAdTXjTLTA2BJ93Pluts3oCh-mZAezSX606cpE683DSvBrcx4vDStn02Q2eHtrkOKfrcuTGX1u3TDY4OI2G-C6NNWcyv9AZZmrlmXOJXrzCL2I2xTKJQolagqCaVEo2FFtijkn19_NDcTMqZtd6qakbubUjSqa1_cXvlP8jbkAdAfkUgrnLt1r_U_Xa_5WtxY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458215395</pqid></control><display><type>article</type><title>Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Rumpler, M. ; Würger, T. ; Roschger, P. ; Zwettler, E. ; Sturmlechner, I. ; Altmann, P. ; Fratzl, P. ; Rogers, M. J. ; Klaushofer, K.</creator><creatorcontrib>Rumpler, M. ; Würger, T. ; Roschger, P. ; Zwettler, E. ; Sturmlechner, I. ; Altmann, P. ; Fratzl, P. ; Rogers, M. J. ; Klaushofer, K.</creatorcontrib><description>The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 μm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm 2 ) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.</description><identifier>ISSN: 0171-967X</identifier><identifier>EISSN: 1432-0827</identifier><identifier>DOI: 10.1007/s00223-013-9786-7</identifier><identifier>PMID: 24022329</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Actin ; Actins - chemistry ; Adult ; Animals ; Biochemistry ; Biomedical and Life Sciences ; Bone and Bones - metabolism ; Bone density ; Bone Matrix - physiology ; Bone Resorption - physiopathology ; Cattle ; Cell Adhesion ; Cell Biology ; Cellular biology ; Dentin - metabolism ; Elephants ; Endocrinology ; Humans ; Leukocytes, Mononuclear - metabolism ; Life Sciences ; Microscopy, Confocal ; Microscopy, Fluorescence ; Middle Aged ; Oligonucleotide Array Sequence Analysis ; Original Research ; Orthopedics ; Osteoblasts - metabolism ; Osteoclasts - metabolism ; Osteogenesis ; Proteins ; Surface Properties ; Young Adult</subject><ispartof>Calcified tissue international, 2013-12, Vol.93 (6), p.526-539</ispartof><rights>The Author(s) 2013</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-18d94b3110b5fb4a7d061da9623f14bdce351d31e57d4503071611ed83435c133</citedby><cites>FETCH-LOGICAL-c569t-18d94b3110b5fb4a7d061da9623f14bdce351d31e57d4503071611ed83435c133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00223-013-9786-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00223-013-9786-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24022329$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rumpler, M.</creatorcontrib><creatorcontrib>Würger, T.</creatorcontrib><creatorcontrib>Roschger, P.</creatorcontrib><creatorcontrib>Zwettler, E.</creatorcontrib><creatorcontrib>Sturmlechner, I.</creatorcontrib><creatorcontrib>Altmann, P.</creatorcontrib><creatorcontrib>Fratzl, P.</creatorcontrib><creatorcontrib>Rogers, M. J.</creatorcontrib><creatorcontrib>Klaushofer, K.</creatorcontrib><title>Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior</title><title>Calcified tissue international</title><addtitle>Calcif Tissue Int</addtitle><addtitle>Calcif Tissue Int</addtitle><description>The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 μm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm 2 ) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.</description><subject>Actin</subject><subject>Actins - chemistry</subject><subject>Adult</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Bone and Bones - metabolism</subject><subject>Bone density</subject><subject>Bone Matrix - physiology</subject><subject>Bone Resorption - physiopathology</subject><subject>Cattle</subject><subject>Cell Adhesion</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Dentin - metabolism</subject><subject>Elephants</subject><subject>Endocrinology</subject><subject>Humans</subject><subject>Leukocytes, Mononuclear - metabolism</subject><subject>Life Sciences</subject><subject>Microscopy, Confocal</subject><subject>Microscopy, Fluorescence</subject><subject>Middle Aged</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoclasts - metabolism</subject><subject>Osteogenesis</subject><subject>Proteins</subject><subject>Surface Properties</subject><subject>Young Adult</subject><issn>0171-967X</issn><issn>1432-0827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhoNY7Lr6A7yRgDfejObkc-KF0K5WC5WCVPEuZGYy3dSZZE1mC_33zXRraQuCVyGc533Px4vQKyDvgBD1PhNCKasIsEqrWlbqCVoAZ7QiNVVP0YKAgkpL9WsfPc_5ghDgUspnaJ_yWUj1Av0-zZOL7WDzlHEM-DAGh23o8CcXJh_wccA__ZTiB_zNtWsbfB5x7PFZsn7ARzGNdvJFNitWcdzY5HP5FuK7yzFtboqHbm0vfUwv0F5vh-xe3r5L9OPo89nqa3Vy-uV4dXBStULqqYK607xhAKQRfcOt6oiEzmpJWQ-86VrHBHQMnFAdF4QRBRLAdTXjTLTA2BJ93Pluts3oCh-mZAezSX606cpE683DSvBrcx4vDStn02Q2eHtrkOKfrcuTGX1u3TDY4OI2G-C6NNWcyv9AZZmrlmXOJXrzCL2I2xTKJQolagqCaVEo2FFtijkn19_NDcTMqZtd6qakbubUjSqa1_cXvlP8jbkAdAfkUgrnLt1r_U_Xa_5WtxY</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Rumpler, M.</creator><creator>Würger, T.</creator><creator>Roschger, P.</creator><creator>Zwettler, E.</creator><creator>Sturmlechner, I.</creator><creator>Altmann, P.</creator><creator>Fratzl, P.</creator><creator>Rogers, M. J.</creator><creator>Klaushofer, K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131201</creationdate><title>Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior</title><author>Rumpler, M. ; Würger, T. ; Roschger, P. ; Zwettler, E. ; Sturmlechner, I. ; Altmann, P. ; Fratzl, P. ; Rogers, M. J. ; Klaushofer, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-18d94b3110b5fb4a7d061da9623f14bdce351d31e57d4503071611ed83435c133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actin</topic><topic>Actins - chemistry</topic><topic>Adult</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Bone and Bones - metabolism</topic><topic>Bone density</topic><topic>Bone Matrix - physiology</topic><topic>Bone Resorption - physiopathology</topic><topic>Cattle</topic><topic>Cell Adhesion</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Dentin - metabolism</topic><topic>Elephants</topic><topic>Endocrinology</topic><topic>Humans</topic><topic>Leukocytes, Mononuclear - metabolism</topic><topic>Life Sciences</topic><topic>Microscopy, Confocal</topic><topic>Microscopy, Fluorescence</topic><topic>Middle Aged</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoclasts - metabolism</topic><topic>Osteogenesis</topic><topic>Proteins</topic><topic>Surface Properties</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rumpler, M.</creatorcontrib><creatorcontrib>Würger, T.</creatorcontrib><creatorcontrib>Roschger, P.</creatorcontrib><creatorcontrib>Zwettler, E.</creatorcontrib><creatorcontrib>Sturmlechner, I.</creatorcontrib><creatorcontrib>Altmann, P.</creatorcontrib><creatorcontrib>Fratzl, P.</creatorcontrib><creatorcontrib>Rogers, M. J.</creatorcontrib><creatorcontrib>Klaushofer, K.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Calcified tissue international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rumpler, M.</au><au>Würger, T.</au><au>Roschger, P.</au><au>Zwettler, E.</au><au>Sturmlechner, I.</au><au>Altmann, P.</au><au>Fratzl, P.</au><au>Rogers, M. J.</au><au>Klaushofer, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior</atitle><jtitle>Calcified tissue international</jtitle><stitle>Calcif Tissue Int</stitle><addtitle>Calcif Tissue Int</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>93</volume><issue>6</issue><spage>526</spage><epage>539</epage><pages>526-539</pages><issn>0171-967X</issn><eissn>1432-0827</eissn><abstract>The main function of osteoclasts in vivo is the resorption of bone matrix, leaving behind typical resorption traces consisting of pits and trails. The mechanism of pit formation is well described, but less is known about trail formation. Pit-forming osteoclasts possess round actin rings. In this study we show that trail-forming osteoclasts have crescent-shaped actin rings and provide a model that describes the detailed mechanism. To generate a trail, the actin ring of the resorption organelle attaches with one side outside the existing trail margin. The other side of the ring attaches to the wall inside the trail, thus sealing that narrow part to be resorbed next (3–21 μm). This 3D configuration allows vertical resorption layer-by-layer from the surface to a depth in combination with horizontal cell movement. Thus, trails are not just traces of a horizontal translation of osteoclasts during resorption. Additionally, we compared osteoclastic resorption on bone and dentin since the latter is the most frequently used in vitro model and data are extrapolated to bone. Histomorphometric analyses revealed a material-dependent effect reflected by an 11-fold higher resorption area and a sevenfold higher number of pits per square centimeter on dentin compared to bone. An important material-independent aspect was reflected by comparable mean pit area (μm 2 ) and podosome patterns. Hence, dentin promotes the generation of resorbing osteoclasts, but once resorption has started, it proceeds independently of material properties. Thus, dentin is a suitable model substrate for data acquisition as long as osteoclast generation is not part of the analyses.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24022329</pmid><doi>10.1007/s00223-013-9786-7</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0171-967X
ispartof Calcified tissue international, 2013-12, Vol.93 (6), p.526-539
issn 0171-967X
1432-0827
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827903
source MEDLINE; SpringerLink (Online service)
subjects Actin
Actins - chemistry
Adult
Animals
Biochemistry
Biomedical and Life Sciences
Bone and Bones - metabolism
Bone density
Bone Matrix - physiology
Bone Resorption - physiopathology
Cattle
Cell Adhesion
Cell Biology
Cellular biology
Dentin - metabolism
Elephants
Endocrinology
Humans
Leukocytes, Mononuclear - metabolism
Life Sciences
Microscopy, Confocal
Microscopy, Fluorescence
Middle Aged
Oligonucleotide Array Sequence Analysis
Original Research
Orthopedics
Osteoblasts - metabolism
Osteoclasts - metabolism
Osteogenesis
Proteins
Surface Properties
Young Adult
title Osteoclasts on Bone and Dentin In Vitro: Mechanism of Trail Formation and Comparison of Resorption Behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Osteoclasts%20on%20Bone%20and%20Dentin%20In%20Vitro:%20Mechanism%20of%20Trail%20Formation%20and%20Comparison%20of%20Resorption%20Behavior&rft.jtitle=Calcified%20tissue%20international&rft.au=Rumpler,%20M.&rft.date=2013-12-01&rft.volume=93&rft.issue=6&rft.spage=526&rft.epage=539&rft.pages=526-539&rft.issn=0171-967X&rft.eissn=1432-0827&rft_id=info:doi/10.1007/s00223-013-9786-7&rft_dat=%3Cproquest_pubme%3E1490719426%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458215395&rft_id=info:pmid/24022329&rfr_iscdi=true