TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear
Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mec...
Gespeichert in:
Veröffentlicht in: | Neuron (Cambridge, Mass.) Mass.), 2013-08, Vol.79 (3), p.504-515 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 515 |
---|---|
container_issue | 3 |
container_start_page | 504 |
container_title | Neuron (Cambridge, Mass.) |
container_volume | 79 |
creator | Pan, Bifeng Géléoc, Gwenaelle S. Asai, Yukako Horwitz, Geoffrey C. Kurima, Kiyoto Ishikawa, Kotaro Kawashima, Yoshiyuki Griffith, Andrew J. Holt, Jeffrey R. |
description | Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.
•Hair cells that express either Tmc1 or Tmc2 have distinct biophysical properties•A Tmc1 point mutation yields reduced calcium selectivity and single-channel current•TMC1 and TMC2 are components of the hair cell mechanotransduction channel•We propose TMC1 and TMC2 heteromultimerize to yield a range of channel properties
Pan et al. assess the role of TMC1 and TMC2 in hair cell mechanotransduction and find that they contribute to mechanotransduction channel permeation properties. Their data support the proposal that TMC1 and TMC2 are components of the hair cell channel that converts mechanical information into electrical signals. |
doi_str_mv | 10.1016/j.neuron.2013.06.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627313005357</els_id><sourcerecordid>3557447851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-5f53198c5133a1e30ed626f8b5cbde0cbfa7f2248a70b6e718704a5aec894fd43</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EokPhHyBkiQ2bDH7Fjw1SFZW2Uis2ZW05zg3jUWIPdlKJf4-r6QNYsLJln3OuPx-E3lOypYTKz_tthDWnuGWE8i2RW0LNC7ShxKhGUGNeog3RRjaSKX6C3pSyJ4SK1tDX6IRxrSjjbIN2tzcdxS4OuG4YPsuAuzQfUoS4FJxGvOwA34DfuZiW7GIZVr-EFHFXTyJMOER86ULGHUzTs8HNs5uCi_iqijI-d_ktejW6qcC7h_UUff96fttdNtffLq66s-vGt4YsTTu2nBrtW8q5o8AJDJLJUfet7wcgvh-dGhkT2inSS1BUKyJc68BrI8ZB8FP05Zh7WPsZBl85spvsIYfZ5V82uWD_volhZ3-kO8s1U4rJGvDpISCnnyuUxc6h-ErnIqS1WNpKQokS2lTpx3-k-7TmWPEslaLlQgumq0ocVT6nUjKMT4-hxN5Xaff2WKW9r9ISaWuV1fbhT5An02N3z6RQv_MuQLbFB4gehpDBL3ZI4f8TfgPl07FX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645348428</pqid></control><display><type>article</type><title>TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pan, Bifeng ; Géléoc, Gwenaelle S. ; Asai, Yukako ; Horwitz, Geoffrey C. ; Kurima, Kiyoto ; Ishikawa, Kotaro ; Kawashima, Yoshiyuki ; Griffith, Andrew J. ; Holt, Jeffrey R.</creator><creatorcontrib>Pan, Bifeng ; Géléoc, Gwenaelle S. ; Asai, Yukako ; Horwitz, Geoffrey C. ; Kurima, Kiyoto ; Ishikawa, Kotaro ; Kawashima, Yoshiyuki ; Griffith, Andrew J. ; Holt, Jeffrey R.</creatorcontrib><description>Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.
•Hair cells that express either Tmc1 or Tmc2 have distinct biophysical properties•A Tmc1 point mutation yields reduced calcium selectivity and single-channel current•TMC1 and TMC2 are components of the hair cell mechanotransduction channel•We propose TMC1 and TMC2 heteromultimerize to yield a range of channel properties
Pan et al. assess the role of TMC1 and TMC2 in hair cell mechanotransduction and find that they contribute to mechanotransduction channel permeation properties. Their data support the proposal that TMC1 and TMC2 are components of the hair cell channel that converts mechanical information into electrical signals.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2013.06.019</identifier><identifier>PMID: 23871232</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation ; Adenoviridae - genetics ; Age Factors ; Animals ; Auditory Perception - physiology ; Biophysical Phenomena - drug effects ; Biophysical Phenomena - genetics ; Biophysical Phenomena - physiology ; Calcium - metabolism ; Calcium - pharmacology ; Cell Count ; Cells, Cultured ; Dose-Response Relationship, Drug ; Ears & hearing ; Evoked Potentials, Auditory, Brain Stem - genetics ; Experiments ; Hair Cells, Auditory - metabolism ; Hair Cells, Auditory - physiology ; Hearing loss ; Hypotheses ; In Vitro Techniques ; Mechanotransduction, Cellular - genetics ; Mechanotransduction, Cellular - physiology ; Membrane Potentials - genetics ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Mice ; Mice, Transgenic ; Mutation ; Mutation - genetics ; Organ of Corti - cytology ; Patch-Clamp Techniques ; Studies ; Transduction, Genetic</subject><ispartof>Neuron (Cambridge, Mass.), 2013-08, Vol.79 (3), p.504-515</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Aug 7, 2013</rights><rights>2013 Elsevier Inc. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-5f53198c5133a1e30ed626f8b5cbde0cbfa7f2248a70b6e718704a5aec894fd43</citedby><cites>FETCH-LOGICAL-c590t-5f53198c5133a1e30ed626f8b5cbde0cbfa7f2248a70b6e718704a5aec894fd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627313005357$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23871232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Bifeng</creatorcontrib><creatorcontrib>Géléoc, Gwenaelle S.</creatorcontrib><creatorcontrib>Asai, Yukako</creatorcontrib><creatorcontrib>Horwitz, Geoffrey C.</creatorcontrib><creatorcontrib>Kurima, Kiyoto</creatorcontrib><creatorcontrib>Ishikawa, Kotaro</creatorcontrib><creatorcontrib>Kawashima, Yoshiyuki</creatorcontrib><creatorcontrib>Griffith, Andrew J.</creatorcontrib><creatorcontrib>Holt, Jeffrey R.</creatorcontrib><title>TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.
•Hair cells that express either Tmc1 or Tmc2 have distinct biophysical properties•A Tmc1 point mutation yields reduced calcium selectivity and single-channel current•TMC1 and TMC2 are components of the hair cell mechanotransduction channel•We propose TMC1 and TMC2 heteromultimerize to yield a range of channel properties
Pan et al. assess the role of TMC1 and TMC2 in hair cell mechanotransduction and find that they contribute to mechanotransduction channel permeation properties. Their data support the proposal that TMC1 and TMC2 are components of the hair cell channel that converts mechanical information into electrical signals.</description><subject>Acoustic Stimulation</subject><subject>Adenoviridae - genetics</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Auditory Perception - physiology</subject><subject>Biophysical Phenomena - drug effects</subject><subject>Biophysical Phenomena - genetics</subject><subject>Biophysical Phenomena - physiology</subject><subject>Calcium - metabolism</subject><subject>Calcium - pharmacology</subject><subject>Cell Count</subject><subject>Cells, Cultured</subject><subject>Dose-Response Relationship, Drug</subject><subject>Ears & hearing</subject><subject>Evoked Potentials, Auditory, Brain Stem - genetics</subject><subject>Experiments</subject><subject>Hair Cells, Auditory - metabolism</subject><subject>Hair Cells, Auditory - physiology</subject><subject>Hearing loss</subject><subject>Hypotheses</subject><subject>In Vitro Techniques</subject><subject>Mechanotransduction, Cellular - genetics</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membrane Potentials - genetics</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Organ of Corti - cytology</subject><subject>Patch-Clamp Techniques</subject><subject>Studies</subject><subject>Transduction, Genetic</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EokPhHyBkiQ2bDH7Fjw1SFZW2Uis2ZW05zg3jUWIPdlKJf4-r6QNYsLJln3OuPx-E3lOypYTKz_tthDWnuGWE8i2RW0LNC7ShxKhGUGNeog3RRjaSKX6C3pSyJ4SK1tDX6IRxrSjjbIN2tzcdxS4OuG4YPsuAuzQfUoS4FJxGvOwA34DfuZiW7GIZVr-EFHFXTyJMOER86ULGHUzTs8HNs5uCi_iqijI-d_ktejW6qcC7h_UUff96fttdNtffLq66s-vGt4YsTTu2nBrtW8q5o8AJDJLJUfet7wcgvh-dGhkT2inSS1BUKyJc68BrI8ZB8FP05Zh7WPsZBl85spvsIYfZ5V82uWD_volhZ3-kO8s1U4rJGvDpISCnnyuUxc6h-ErnIqS1WNpKQokS2lTpx3-k-7TmWPEslaLlQgumq0ocVT6nUjKMT4-hxN5Xaff2WKW9r9ISaWuV1fbhT5An02N3z6RQv_MuQLbFB4gehpDBL3ZI4f8TfgPl07FX</recordid><startdate>20130807</startdate><enddate>20130807</enddate><creator>Pan, Bifeng</creator><creator>Géléoc, Gwenaelle S.</creator><creator>Asai, Yukako</creator><creator>Horwitz, Geoffrey C.</creator><creator>Kurima, Kiyoto</creator><creator>Ishikawa, Kotaro</creator><creator>Kawashima, Yoshiyuki</creator><creator>Griffith, Andrew J.</creator><creator>Holt, Jeffrey R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20130807</creationdate><title>TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear</title><author>Pan, Bifeng ; Géléoc, Gwenaelle S. ; Asai, Yukako ; Horwitz, Geoffrey C. ; Kurima, Kiyoto ; Ishikawa, Kotaro ; Kawashima, Yoshiyuki ; Griffith, Andrew J. ; Holt, Jeffrey R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-5f53198c5133a1e30ed626f8b5cbde0cbfa7f2248a70b6e718704a5aec894fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acoustic Stimulation</topic><topic>Adenoviridae - genetics</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Auditory Perception - physiology</topic><topic>Biophysical Phenomena - drug effects</topic><topic>Biophysical Phenomena - genetics</topic><topic>Biophysical Phenomena - physiology</topic><topic>Calcium - metabolism</topic><topic>Calcium - pharmacology</topic><topic>Cell Count</topic><topic>Cells, Cultured</topic><topic>Dose-Response Relationship, Drug</topic><topic>Ears & hearing</topic><topic>Evoked Potentials, Auditory, Brain Stem - genetics</topic><topic>Experiments</topic><topic>Hair Cells, Auditory - metabolism</topic><topic>Hair Cells, Auditory - physiology</topic><topic>Hearing loss</topic><topic>Hypotheses</topic><topic>In Vitro Techniques</topic><topic>Mechanotransduction, Cellular - genetics</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membrane Potentials - genetics</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Organ of Corti - cytology</topic><topic>Patch-Clamp Techniques</topic><topic>Studies</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Bifeng</creatorcontrib><creatorcontrib>Géléoc, Gwenaelle S.</creatorcontrib><creatorcontrib>Asai, Yukako</creatorcontrib><creatorcontrib>Horwitz, Geoffrey C.</creatorcontrib><creatorcontrib>Kurima, Kiyoto</creatorcontrib><creatorcontrib>Ishikawa, Kotaro</creatorcontrib><creatorcontrib>Kawashima, Yoshiyuki</creatorcontrib><creatorcontrib>Griffith, Andrew J.</creatorcontrib><creatorcontrib>Holt, Jeffrey R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Bifeng</au><au>Géléoc, Gwenaelle S.</au><au>Asai, Yukako</au><au>Horwitz, Geoffrey C.</au><au>Kurima, Kiyoto</au><au>Ishikawa, Kotaro</au><au>Kawashima, Yoshiyuki</au><au>Griffith, Andrew J.</au><au>Holt, Jeffrey R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2013-08-07</date><risdate>2013</risdate><volume>79</volume><issue>3</issue><spage>504</spage><epage>515</epage><pages>504-515</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>Sensory transduction in auditory and vestibular hair cells requires expression of transmembrane channel-like (Tmc) 1 and 2 genes, but the function of these genes is unknown. To investigate the hypothesis that TMC1 and TMC2 proteins are components of the mechanosensitive ion channels that convert mechanical information into electrical signals, we recorded whole-cell and single-channel currents from mouse hair cells that expressed Tmc1, Tmc2, or mutant Tmc1. Cells that expressed Tmc2 had high calcium permeability and large single-channel currents, while cells with mutant Tmc1 had reduced calcium permeability and reduced single-channel currents. Cells that expressed Tmc1 and Tmc2 had a broad range of single-channel currents, suggesting multiple heteromeric assemblies of TMC subunits. The data demonstrate TMC1 and TMC2 are components of hair cell transduction channels and contribute to permeation properties. Gradients in TMC channel composition may also contribute to variation in sensory transduction along the tonotopic axis of the mammalian cochlea.
•Hair cells that express either Tmc1 or Tmc2 have distinct biophysical properties•A Tmc1 point mutation yields reduced calcium selectivity and single-channel current•TMC1 and TMC2 are components of the hair cell mechanotransduction channel•We propose TMC1 and TMC2 heteromultimerize to yield a range of channel properties
Pan et al. assess the role of TMC1 and TMC2 in hair cell mechanotransduction and find that they contribute to mechanotransduction channel permeation properties. Their data support the proposal that TMC1 and TMC2 are components of the hair cell channel that converts mechanical information into electrical signals.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>23871232</pmid><doi>10.1016/j.neuron.2013.06.019</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-6273 |
ispartof | Neuron (Cambridge, Mass.), 2013-08, Vol.79 (3), p.504-515 |
issn | 0896-6273 1097-4199 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3827726 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Acoustic Stimulation Adenoviridae - genetics Age Factors Animals Auditory Perception - physiology Biophysical Phenomena - drug effects Biophysical Phenomena - genetics Biophysical Phenomena - physiology Calcium - metabolism Calcium - pharmacology Cell Count Cells, Cultured Dose-Response Relationship, Drug Ears & hearing Evoked Potentials, Auditory, Brain Stem - genetics Experiments Hair Cells, Auditory - metabolism Hair Cells, Auditory - physiology Hearing loss Hypotheses In Vitro Techniques Mechanotransduction, Cellular - genetics Mechanotransduction, Cellular - physiology Membrane Potentials - genetics Membrane Proteins - genetics Membrane Proteins - metabolism Mice Mice, Transgenic Mutation Mutation - genetics Organ of Corti - cytology Patch-Clamp Techniques Studies Transduction, Genetic |
title | TMC1 and TMC2 Are Components of the Mechanotransduction Channel in Hair Cells of the Mammalian Inner Ear |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A07%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TMC1%20and%20TMC2%20Are%20Components%20of%20the%20Mechanotransduction%20Channel%20in%20Hair%20Cells%20of%20the%20Mammalian%20Inner%20Ear&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Pan,%20Bifeng&rft.date=2013-08-07&rft.volume=79&rft.issue=3&rft.spage=504&rft.epage=515&rft.pages=504-515&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2013.06.019&rft_dat=%3Cproquest_pubme%3E3557447851%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645348428&rft_id=info:pmid/23871232&rft_els_id=S0896627313005357&rfr_iscdi=true |