Screening nonspecific interactions of peptides without background interference
Abstract The need to discover new peptide sequences to perform particular tasks has lead to a variety of peptide screening methods: phage display, yeast display, bacterial display and resin display. These are effective screening methods because the role of background binding is often insignificant....
Gespeichert in:
Veröffentlicht in: | Biomaterials 2013-03, Vol.34 (8), p.1871-1877 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1877 |
---|---|
container_issue | 8 |
container_start_page | 1871 |
container_title | Biomaterials |
container_volume | 34 |
creator | Keefe, Andrew J Caldwell, Kyle B Nowinski, Ann K White, Andrew D Thakkar, Amit Jiang, Shaoyi |
description | Abstract The need to discover new peptide sequences to perform particular tasks has lead to a variety of peptide screening methods: phage display, yeast display, bacterial display and resin display. These are effective screening methods because the role of background binding is often insignificant. In the field of nonfouling materials, however, a premium is placed on chemistries that have extremely low levels of nonspecific binding. Due to the presence of background binding, it is not possible to use traditional peptide screening methods to select for nonfouling chemistries. Here, we developed a peptide screening method, as compared to traditional methods, that can successfully evaluate the effectiveness of nonfouling peptide sequences. We have tested the effect of different peptide lengths and chemistries on the adsorption of protein. The order of residues within a single sequence was also adjusted to determine the effect of charge segregation on protein adsorption. |
doi_str_mv | 10.1016/j.biomaterials.2012.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3826821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961212012586</els_id><sourcerecordid>1669858080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-8fb259836c0b5a6be56eea2317e69dcfe4b26543d82b07ed2c87638f55b8ebde3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhi0EokvhL6CIE5ek_oi9DodKqAWKVMGhcLZsZ7KdbdZe7KSo_x5HW6rCqSfL42feGc87hLxjtGGUqZNt4zDu7AQJ7ZgbThlvGGsoa5-RFdNrXcuOyudkVSK87hTjR-RVzlta7rTlL8kRF7xVVIkV-XblE0DAsKlCDHkPHgf0FYaibv2EJVbFodrDfsIecvUbp-s4T5Wz_maT4hz6AztAguDhNXkxlJ7gzf15TH5-_vTj7KK-_P7l69nHy9orqqdaD47LTgvlqZNWOZAKwHLB1qC63g_QOq5kK3rNHV1Dz71eK6EHKZ0G14M4JqcH3f3sdtB7CFOyo9kn3Nl0Z6JF8-9LwGuzibdGaK40Z0Xg_b1Air9myJPZYfYwjjZAnLNhSnVaaqrpU9CWU05FV9APB9SnmHOC4aEjRs3indmax96ZxTvDmCnOlOS3j__0kPrXrAKcHwAok71FSCZ7XKbeYwI_mT7i0-qc_ifjRwzo7XgDd5C3cU5hyWEmc0PN1bJFyxKxRURqJf4A7gbJcg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1664202039</pqid></control><display><type>article</type><title>Screening nonspecific interactions of peptides without background interference</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Keefe, Andrew J ; Caldwell, Kyle B ; Nowinski, Ann K ; White, Andrew D ; Thakkar, Amit ; Jiang, Shaoyi</creator><creatorcontrib>Keefe, Andrew J ; Caldwell, Kyle B ; Nowinski, Ann K ; White, Andrew D ; Thakkar, Amit ; Jiang, Shaoyi</creatorcontrib><description>Abstract The need to discover new peptide sequences to perform particular tasks has lead to a variety of peptide screening methods: phage display, yeast display, bacterial display and resin display. These are effective screening methods because the role of background binding is often insignificant. In the field of nonfouling materials, however, a premium is placed on chemistries that have extremely low levels of nonspecific binding. Due to the presence of background binding, it is not possible to use traditional peptide screening methods to select for nonfouling chemistries. Here, we developed a peptide screening method, as compared to traditional methods, that can successfully evaluate the effectiveness of nonfouling peptide sequences. We have tested the effect of different peptide lengths and chemistries on the adsorption of protein. The order of residues within a single sequence was also adjusted to determine the effect of charge segregation on protein adsorption.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2012.11.014</identifier><identifier>PMID: 23246063</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adsorption ; Advanced Basic Science ; Amino Acid Sequence ; Animals ; Bacteria ; Binding ; Cattle ; Charge ; Dentistry ; Fibrinogen - metabolism ; Glass - chemistry ; Microscopy, Fluorescence ; Microspheres ; Molecular Sequence Data ; Peptide ; Peptide Library ; Peptide screening ; Peptides ; Peptides - analysis ; Peptides - chemistry ; Peptides - metabolism ; Peptides - pharmacology ; Photoelectron Spectroscopy ; Protein adsorption ; Protein Binding - drug effects ; Screening ; Segregations ; Surface modification ; Surface Properties ; Surgical implants ; Yeast</subject><ispartof>Biomaterials, 2013-03, Vol.34 (8), p.1871-1877</ispartof><rights>Elsevier Ltd</rights><rights>2012 Elsevier Ltd</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-8fb259836c0b5a6be56eea2317e69dcfe4b26543d82b07ed2c87638f55b8ebde3</citedby><cites>FETCH-LOGICAL-c608t-8fb259836c0b5a6be56eea2317e69dcfe4b26543d82b07ed2c87638f55b8ebde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2012.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23246063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Keefe, Andrew J</creatorcontrib><creatorcontrib>Caldwell, Kyle B</creatorcontrib><creatorcontrib>Nowinski, Ann K</creatorcontrib><creatorcontrib>White, Andrew D</creatorcontrib><creatorcontrib>Thakkar, Amit</creatorcontrib><creatorcontrib>Jiang, Shaoyi</creatorcontrib><title>Screening nonspecific interactions of peptides without background interference</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract The need to discover new peptide sequences to perform particular tasks has lead to a variety of peptide screening methods: phage display, yeast display, bacterial display and resin display. These are effective screening methods because the role of background binding is often insignificant. In the field of nonfouling materials, however, a premium is placed on chemistries that have extremely low levels of nonspecific binding. Due to the presence of background binding, it is not possible to use traditional peptide screening methods to select for nonfouling chemistries. Here, we developed a peptide screening method, as compared to traditional methods, that can successfully evaluate the effectiveness of nonfouling peptide sequences. We have tested the effect of different peptide lengths and chemistries on the adsorption of protein. The order of residues within a single sequence was also adjusted to determine the effect of charge segregation on protein adsorption.</description><subject>Adsorption</subject><subject>Advanced Basic Science</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Bacteria</subject><subject>Binding</subject><subject>Cattle</subject><subject>Charge</subject><subject>Dentistry</subject><subject>Fibrinogen - metabolism</subject><subject>Glass - chemistry</subject><subject>Microscopy, Fluorescence</subject><subject>Microspheres</subject><subject>Molecular Sequence Data</subject><subject>Peptide</subject><subject>Peptide Library</subject><subject>Peptide screening</subject><subject>Peptides</subject><subject>Peptides - analysis</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Peptides - pharmacology</subject><subject>Photoelectron Spectroscopy</subject><subject>Protein adsorption</subject><subject>Protein Binding - drug effects</subject><subject>Screening</subject><subject>Segregations</subject><subject>Surface modification</subject><subject>Surface Properties</subject><subject>Surgical implants</subject><subject>Yeast</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkk1v1DAQhi0EokvhL6CIE5ek_oi9DodKqAWKVMGhcLZsZ7KdbdZe7KSo_x5HW6rCqSfL42feGc87hLxjtGGUqZNt4zDu7AQJ7ZgbThlvGGsoa5-RFdNrXcuOyudkVSK87hTjR-RVzlta7rTlL8kRF7xVVIkV-XblE0DAsKlCDHkPHgf0FYaibv2EJVbFodrDfsIecvUbp-s4T5Wz_maT4hz6AztAguDhNXkxlJ7gzf15TH5-_vTj7KK-_P7l69nHy9orqqdaD47LTgvlqZNWOZAKwHLB1qC63g_QOq5kK3rNHV1Dz71eK6EHKZ0G14M4JqcH3f3sdtB7CFOyo9kn3Nl0Z6JF8-9LwGuzibdGaK40Z0Xg_b1Air9myJPZYfYwjjZAnLNhSnVaaqrpU9CWU05FV9APB9SnmHOC4aEjRs3indmax96ZxTvDmCnOlOS3j__0kPrXrAKcHwAok71FSCZ7XKbeYwI_mT7i0-qc_ifjRwzo7XgDd5C3cU5hyWEmc0PN1bJFyxKxRURqJf4A7gbJcg</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Keefe, Andrew J</creator><creator>Caldwell, Kyle B</creator><creator>Nowinski, Ann K</creator><creator>White, Andrew D</creator><creator>Thakkar, Amit</creator><creator>Jiang, Shaoyi</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130301</creationdate><title>Screening nonspecific interactions of peptides without background interference</title><author>Keefe, Andrew J ; Caldwell, Kyle B ; Nowinski, Ann K ; White, Andrew D ; Thakkar, Amit ; Jiang, Shaoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-8fb259836c0b5a6be56eea2317e69dcfe4b26543d82b07ed2c87638f55b8ebde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Advanced Basic Science</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Bacteria</topic><topic>Binding</topic><topic>Cattle</topic><topic>Charge</topic><topic>Dentistry</topic><topic>Fibrinogen - metabolism</topic><topic>Glass - chemistry</topic><topic>Microscopy, Fluorescence</topic><topic>Microspheres</topic><topic>Molecular Sequence Data</topic><topic>Peptide</topic><topic>Peptide Library</topic><topic>Peptide screening</topic><topic>Peptides</topic><topic>Peptides - analysis</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Peptides - pharmacology</topic><topic>Photoelectron Spectroscopy</topic><topic>Protein adsorption</topic><topic>Protein Binding - drug effects</topic><topic>Screening</topic><topic>Segregations</topic><topic>Surface modification</topic><topic>Surface Properties</topic><topic>Surgical implants</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keefe, Andrew J</creatorcontrib><creatorcontrib>Caldwell, Kyle B</creatorcontrib><creatorcontrib>Nowinski, Ann K</creatorcontrib><creatorcontrib>White, Andrew D</creatorcontrib><creatorcontrib>Thakkar, Amit</creatorcontrib><creatorcontrib>Jiang, Shaoyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keefe, Andrew J</au><au>Caldwell, Kyle B</au><au>Nowinski, Ann K</au><au>White, Andrew D</au><au>Thakkar, Amit</au><au>Jiang, Shaoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Screening nonspecific interactions of peptides without background interference</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>34</volume><issue>8</issue><spage>1871</spage><epage>1877</epage><pages>1871-1877</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract The need to discover new peptide sequences to perform particular tasks has lead to a variety of peptide screening methods: phage display, yeast display, bacterial display and resin display. These are effective screening methods because the role of background binding is often insignificant. In the field of nonfouling materials, however, a premium is placed on chemistries that have extremely low levels of nonspecific binding. Due to the presence of background binding, it is not possible to use traditional peptide screening methods to select for nonfouling chemistries. Here, we developed a peptide screening method, as compared to traditional methods, that can successfully evaluate the effectiveness of nonfouling peptide sequences. We have tested the effect of different peptide lengths and chemistries on the adsorption of protein. The order of residues within a single sequence was also adjusted to determine the effect of charge segregation on protein adsorption.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>23246063</pmid><doi>10.1016/j.biomaterials.2012.11.014</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2013-03, Vol.34 (8), p.1871-1877 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3826821 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adsorption Advanced Basic Science Amino Acid Sequence Animals Bacteria Binding Cattle Charge Dentistry Fibrinogen - metabolism Glass - chemistry Microscopy, Fluorescence Microspheres Molecular Sequence Data Peptide Peptide Library Peptide screening Peptides Peptides - analysis Peptides - chemistry Peptides - metabolism Peptides - pharmacology Photoelectron Spectroscopy Protein adsorption Protein Binding - drug effects Screening Segregations Surface modification Surface Properties Surgical implants Yeast |
title | Screening nonspecific interactions of peptides without background interference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Screening%20nonspecific%20interactions%20of%20peptides%20without%20background%20interference&rft.jtitle=Biomaterials&rft.au=Keefe,%20Andrew%20J&rft.date=2013-03-01&rft.volume=34&rft.issue=8&rft.spage=1871&rft.epage=1877&rft.pages=1871-1877&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2012.11.014&rft_dat=%3Cproquest_pubme%3E1669858080%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1664202039&rft_id=info:pmid/23246063&rft_els_id=S0142961212012586&rfr_iscdi=true |