The regulation of mitochondrial DNA copy number in glioblastoma cells
As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood wh...
Gespeichert in:
Veröffentlicht in: | Cell death and differentiation 2013-12, Vol.20 (12), p.1644-1653 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1653 |
---|---|
container_issue | 12 |
container_start_page | 1644 |
container_title | Cell death and differentiation |
container_volume | 20 |
creator | Dickinson, A Yeung, K Y Donoghue, J Baker, M J Kelly, R DW McKenzie, M Johns, T G St. John, J C |
description | As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including
POU class 5 homeobox 1
(
OCT4
) and
sonic hedgehog
(
SHH
). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme. |
doi_str_mv | 10.1038/cdd.2013.115 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3824586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1450177808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c549t-bcf643c578d44723a323d51e3cf206c3b293033b3967ab143b50748410add3b43</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoMotlZ3riXgxoVzTXLyMdkIpdYPKLqp65BkMvemzCTXZEbovzeXW0sVwVUOnIf35JwHoZeUbCiB_p0fhg0jFDaUikfolHIlO8EJPG41CNJpwtUJelbrDSFEKi2fohMGWgsG5BRdXu8CLmG7TnaJOeE84jku2e9yGkq0E_7w9Rz7vL_FaZ1dKDgmvJ1idpOtS54t9mGa6nP0ZLRTDS_u3jP0_ePl9cXn7urbpy8X51edF1wvnfOj5OCF6gfOFQMLDAZBA_iREenBMQ0EwIGWyjrKwQmieM8pscMAjsMZen_M3a9uDoMPaSl2MvsSZ1tuTbbR_NlJcWe2-aeBnnHRyxbw5i6g5B9rqIuZYz2sYFPIazVUSEKZ5Iz_H-WCUKV60jf09V_oTV5LapdoFNdKA1PQqLdHypdcawnj_b8pMQeVpqk0B5WmqWz4q4e73sO_3TWgOwK1tdI2lAdT_xX4C2LQpv8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449793273</pqid></control><display><type>article</type><title>The regulation of mitochondrial DNA copy number in glioblastoma cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SpringerLink Journals - AutoHoldings</source><creator>Dickinson, A ; Yeung, K Y ; Donoghue, J ; Baker, M J ; Kelly, R DW ; McKenzie, M ; Johns, T G ; St. John, J C</creator><creatorcontrib>Dickinson, A ; Yeung, K Y ; Donoghue, J ; Baker, M J ; Kelly, R DW ; McKenzie, M ; Johns, T G ; St. John, J C</creatorcontrib><description>As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including
POU class 5 homeobox 1
(
OCT4
) and
sonic hedgehog
(
SHH
). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/cdd.2013.115</identifier><identifier>PMID: 23995230</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/726/2129 ; 631/208/726/649/2157 ; 692/420/755 ; 692/699/67/1922 ; Adenosine triphosphate ; Animals ; Apoptosis ; Biochemistry ; Biomarkers, Tumor - genetics ; Biomedical and Life Sciences ; Brain Neoplasms - genetics ; Brain Neoplasms - pathology ; Cell Biology ; Cell Cycle Analysis ; Cell death ; Cell Differentiation - genetics ; Cell Line, Tumor ; Cell Nucleus - genetics ; Cell Respiration - genetics ; DNA Copy Number Variations - genetics ; DNA Replication - genetics ; DNA, Mitochondrial - genetics ; Gene expression ; Gene Expression Regulation, Neoplastic ; Genetic disorders ; Genomes ; Glial Fibrillary Acidic Protein - metabolism ; Glioblastoma - genetics ; Glioblastoma - pathology ; Growth factors ; Humans ; Life Sciences ; Medical prognosis ; Medical research ; Metabolism ; Mice ; Mitochondrial DNA ; Neural Stem Cells - metabolism ; Original Paper ; Phosphorylation ; Proteins ; Stem Cells ; Transcription factors ; Tumorigenesis ; Tumors ; Up-Regulation - genetics</subject><ispartof>Cell death and differentiation, 2013-12, Vol.20 (12), p.1644-1653</ispartof><rights>The Author(s) 2013</rights><rights>Copyright Nature Publishing Group Dec 2013</rights><rights>Copyright © 2013 Macmillan Publishers Limited 2013 Macmillan Publishers Limited</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c549t-bcf643c578d44723a323d51e3cf206c3b293033b3967ab143b50748410add3b43</citedby><cites>FETCH-LOGICAL-c549t-bcf643c578d44723a323d51e3cf206c3b293033b3967ab143b50748410add3b43</cites><orcidid>0000-0002-8874-4543 ; 0000000288744543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824586/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824586/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23995230$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dickinson, A</creatorcontrib><creatorcontrib>Yeung, K Y</creatorcontrib><creatorcontrib>Donoghue, J</creatorcontrib><creatorcontrib>Baker, M J</creatorcontrib><creatorcontrib>Kelly, R DW</creatorcontrib><creatorcontrib>McKenzie, M</creatorcontrib><creatorcontrib>Johns, T G</creatorcontrib><creatorcontrib>St. John, J C</creatorcontrib><title>The regulation of mitochondrial DNA copy number in glioblastoma cells</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including
POU class 5 homeobox 1
(
OCT4
) and
sonic hedgehog
(
SHH
). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.</description><subject>631/208/726/2129</subject><subject>631/208/726/649/2157</subject><subject>692/420/755</subject><subject>692/699/67/1922</subject><subject>Adenosine triphosphate</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomedical and Life Sciences</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - pathology</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cell death</subject><subject>Cell Differentiation - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Respiration - genetics</subject><subject>DNA Copy Number Variations - genetics</subject><subject>DNA Replication - genetics</subject><subject>DNA, Mitochondrial - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genetic disorders</subject><subject>Genomes</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - pathology</subject><subject>Growth factors</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mitochondrial DNA</subject><subject>Neural Stem Cells - metabolism</subject><subject>Original Paper</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>Stem Cells</subject><subject>Transcription factors</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><subject>Up-Regulation - genetics</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1rFTEUhoMotlZ3riXgxoVzTXLyMdkIpdYPKLqp65BkMvemzCTXZEbovzeXW0sVwVUOnIf35JwHoZeUbCiB_p0fhg0jFDaUikfolHIlO8EJPG41CNJpwtUJelbrDSFEKi2fohMGWgsG5BRdXu8CLmG7TnaJOeE84jku2e9yGkq0E_7w9Rz7vL_FaZ1dKDgmvJ1idpOtS54t9mGa6nP0ZLRTDS_u3jP0_ePl9cXn7urbpy8X51edF1wvnfOj5OCF6gfOFQMLDAZBA_iREenBMQ0EwIGWyjrKwQmieM8pscMAjsMZen_M3a9uDoMPaSl2MvsSZ1tuTbbR_NlJcWe2-aeBnnHRyxbw5i6g5B9rqIuZYz2sYFPIazVUSEKZ5Iz_H-WCUKV60jf09V_oTV5LapdoFNdKA1PQqLdHypdcawnj_b8pMQeVpqk0B5WmqWz4q4e73sO_3TWgOwK1tdI2lAdT_xX4C2LQpv8</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Dickinson, A</creator><creator>Yeung, K Y</creator><creator>Donoghue, J</creator><creator>Baker, M J</creator><creator>Kelly, R DW</creator><creator>McKenzie, M</creator><creator>Johns, T G</creator><creator>St. John, J C</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8874-4543</orcidid><orcidid>https://orcid.org/0000000288744543</orcidid></search><sort><creationdate>20131201</creationdate><title>The regulation of mitochondrial DNA copy number in glioblastoma cells</title><author>Dickinson, A ; Yeung, K Y ; Donoghue, J ; Baker, M J ; Kelly, R DW ; McKenzie, M ; Johns, T G ; St. John, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c549t-bcf643c578d44723a323d51e3cf206c3b293033b3967ab143b50748410add3b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/208/726/2129</topic><topic>631/208/726/649/2157</topic><topic>692/420/755</topic><topic>692/699/67/1922</topic><topic>Adenosine triphosphate</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomedical and Life Sciences</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - pathology</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cell death</topic><topic>Cell Differentiation - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Respiration - genetics</topic><topic>DNA Copy Number Variations - genetics</topic><topic>DNA Replication - genetics</topic><topic>DNA, Mitochondrial - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genetic disorders</topic><topic>Genomes</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - pathology</topic><topic>Growth factors</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mitochondrial DNA</topic><topic>Neural Stem Cells - metabolism</topic><topic>Original Paper</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>Stem Cells</topic><topic>Transcription factors</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><topic>Up-Regulation - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dickinson, A</creatorcontrib><creatorcontrib>Yeung, K Y</creatorcontrib><creatorcontrib>Donoghue, J</creatorcontrib><creatorcontrib>Baker, M J</creatorcontrib><creatorcontrib>Kelly, R DW</creatorcontrib><creatorcontrib>McKenzie, M</creatorcontrib><creatorcontrib>Johns, T G</creatorcontrib><creatorcontrib>St. John, J C</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dickinson, A</au><au>Yeung, K Y</au><au>Donoghue, J</au><au>Baker, M J</au><au>Kelly, R DW</au><au>McKenzie, M</au><au>Johns, T G</au><au>St. John, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The regulation of mitochondrial DNA copy number in glioblastoma cells</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>20</volume><issue>12</issue><spage>1644</spage><epage>1653</epage><pages>1644-1653</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>As stem cells undergo differentiation, mitochondrial DNA (mtDNA) copy number is strictly regulated in order that specialized cells can generate appropriate levels of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS) to undertake their specific functions. It is not understood whether tumor-initiating cells regulate their mtDNA in a similar manner or whether mtDNA is essential for tumorigenesis. We show that human neural stem cells (hNSCs) increased their mtDNA content during differentiation in a process that was mediated by a synergistic relationship between the nuclear and mitochondrial genomes and results in increased respiratory capacity. Differentiating multipotent glioblastoma cells failed to match the expansion in mtDNA copy number, patterns of gene expression and increased respiratory capacity observed in hNSCs. Partial depletion of glioblastoma cell mtDNA rescued mtDNA replication events and enhanced cell differentiation. However, prolonged depletion resulted in impaired mtDNA replication, reduced proliferation and induced the expression of early developmental and pro-survival markers including
POU class 5 homeobox 1
(
OCT4
) and
sonic hedgehog
(
SHH
). The transfer of glioblastoma cells depleted to varying degrees of their mtDNA content into immunocompromised mice resulted in tumors requiring significantly longer to form compared with non-depleted cells. The number of tumors formed and the time to tumor formation was relative to the degree of mtDNA depletion. The tumors derived from mtDNA depleted glioblastoma cells recovered their mtDNA copy number as part of the tumor formation process. These outcomes demonstrate the importance of mtDNA to the initiation and maintenance of tumorigenesis in glioblastoma multiforme.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23995230</pmid><doi>10.1038/cdd.2013.115</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8874-4543</orcidid><orcidid>https://orcid.org/0000000288744543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-9047 |
ispartof | Cell death and differentiation, 2013-12, Vol.20 (12), p.1644-1653 |
issn | 1350-9047 1476-5403 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3824586 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; SpringerLink Journals - AutoHoldings |
subjects | 631/208/726/2129 631/208/726/649/2157 692/420/755 692/699/67/1922 Adenosine triphosphate Animals Apoptosis Biochemistry Biomarkers, Tumor - genetics Biomedical and Life Sciences Brain Neoplasms - genetics Brain Neoplasms - pathology Cell Biology Cell Cycle Analysis Cell death Cell Differentiation - genetics Cell Line, Tumor Cell Nucleus - genetics Cell Respiration - genetics DNA Copy Number Variations - genetics DNA Replication - genetics DNA, Mitochondrial - genetics Gene expression Gene Expression Regulation, Neoplastic Genetic disorders Genomes Glial Fibrillary Acidic Protein - metabolism Glioblastoma - genetics Glioblastoma - pathology Growth factors Humans Life Sciences Medical prognosis Medical research Metabolism Mice Mitochondrial DNA Neural Stem Cells - metabolism Original Paper Phosphorylation Proteins Stem Cells Transcription factors Tumorigenesis Tumors Up-Regulation - genetics |
title | The regulation of mitochondrial DNA copy number in glioblastoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20regulation%20of%20mitochondrial%20DNA%20copy%20number%20in%20glioblastoma%20cells&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Dickinson,%20A&rft.date=2013-12-01&rft.volume=20&rft.issue=12&rft.spage=1644&rft.epage=1653&rft.pages=1644-1653&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/cdd.2013.115&rft_dat=%3Cproquest_pubme%3E1450177808%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449793273&rft_id=info:pmid/23995230&rfr_iscdi=true |