Fast GCaMPs for improved tracking of neuronal activity
The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca 2+ -sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find t...
Gespeichert in:
Veröffentlicht in: | Nature communications 2013-07, Vol.4 (1), p.2170-2170, Article 2170 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2170 |
---|---|
container_issue | 1 |
container_start_page | 2170 |
container_title | Nature communications |
container_volume | 4 |
creator | Sun, Xiaonan R. Badura, Aleksandra Pacheco, Diego A. Lynch, Laura A. Schneider, Eve R. Taylor, Matthew P. Hogue, Ian B. Enquist, Lynn W. Murthy, Mala Wang, Samuel S. -H. |
description | The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca
2+
-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain’s Ca
2+
-chelating residues. Second, we find that off-responses to Ca
2+
are rate-limited by dissociation of the RS20 domain from calmodulin’s hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca
2+
and by slow binding to the C-lobe at lower Ca
2+
. We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of
K
D
, allowing coexpression of multiple variants to span an expanded range of Ca
2+
concentrations. Finally, we show that Fast-GCaMPs track natural song in
Drosophila
auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Genetically encoded calcium indicators are commonly used to study cellular activity, but their usefulness is limited by their response kinetics. Here the authors generate indicators with faster responses to calcium events in both
Drosophila melanogaster
and mammalian neurons. |
doi_str_mv | 10.1038/ncomms3170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3824390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3022243161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fa9602f56b06195eb8dbd4c5fd125540513c39c4a7dabf702ab60ee575d1437f3</originalsourceid><addsrcrecordid>eNplkd9LwzAQx4Mobsy9-AdIwRdRqknzq30RZLgpTPRBn0OaJrOzbWbSDvbfG92cU-_lDu7D9753B8AxgpcI4vSqUbauPUYc7oF-AgmKEU_w_k7dA0Pv5zAEzlBKyCHoJThlOIVpH7Cx9G00GcmHJx8Z66KyXji71EXUOqneymYWWRM1unO2kVUkVVsuy3Z1BA6MrLwebvIAvIxvn0d38fRxcj-6mcaKkKSNjcwYTAxlOWQoozpPi7wgipoCJZQSSBFWOFNE8kLmhsNE5gxqTTktEMHc4AG4XusuurzWhdJNsFWJhStr6VbCylL87jTlq5jZpcBpQnAGg8DZRsDZ9077VtSlV7qqZKNt5wUiwRlnGSYBPf2Dzm3nwtZfFGSMUMwDdb6mlLPeO222ZhAUnx8RPx8J8Mmu_S36ff8AXKwBH1rNTLudmf_lPgBKm5WX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1400664537</pqid></control><display><type>article</type><title>Fast GCaMPs for improved tracking of neuronal activity</title><source>Springer Nature OA/Free Journals</source><creator>Sun, Xiaonan R. ; Badura, Aleksandra ; Pacheco, Diego A. ; Lynch, Laura A. ; Schneider, Eve R. ; Taylor, Matthew P. ; Hogue, Ian B. ; Enquist, Lynn W. ; Murthy, Mala ; Wang, Samuel S. -H.</creator><creatorcontrib>Sun, Xiaonan R. ; Badura, Aleksandra ; Pacheco, Diego A. ; Lynch, Laura A. ; Schneider, Eve R. ; Taylor, Matthew P. ; Hogue, Ian B. ; Enquist, Lynn W. ; Murthy, Mala ; Wang, Samuel S. -H.</creatorcontrib><description>The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca
2+
-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain’s Ca
2+
-chelating residues. Second, we find that off-responses to Ca
2+
are rate-limited by dissociation of the RS20 domain from calmodulin’s hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca
2+
and by slow binding to the C-lobe at lower Ca
2+
. We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of
K
D
, allowing coexpression of multiple variants to span an expanded range of Ca
2+
concentrations. Finally, we show that Fast-GCaMPs track natural song in
Drosophila
auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Genetically encoded calcium indicators are commonly used to study cellular activity, but their usefulness is limited by their response kinetics. Here the authors generate indicators with faster responses to calcium events in both
Drosophila melanogaster
and mammalian neurons.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms3170</identifier><identifier>PMID: 23863808</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1888 ; 631/378 ; Acoustic Stimulation ; Amino Acid Sequence ; Animals ; Auditory Perception - physiology ; Binding Sites ; Calcium - metabolism ; Calmodulin - chemistry ; Calmodulin - genetics ; Calmodulin - metabolism ; Drosophila melanogaster - cytology ; Drosophila melanogaster - physiology ; Green Fluorescent Proteins - chemistry ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humanities and Social Sciences ; Kinetics ; Mice ; Models, Molecular ; Molecular Sequence Data ; multidisciplinary ; Neurons - cytology ; Neurons - physiology ; Protein Structure, Tertiary ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Science ; Science (multidisciplinary) ; Time Factors</subject><ispartof>Nature communications, 2013-07, Vol.4 (1), p.2170-2170, Article 2170</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Jul 2013</rights><rights>2013 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fa9602f56b06195eb8dbd4c5fd125540513c39c4a7dabf702ab60ee575d1437f3</citedby><cites>FETCH-LOGICAL-c442t-fa9602f56b06195eb8dbd4c5fd125540513c39c4a7dabf702ab60ee575d1437f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824390/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824390/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,41125,42194,51581,53796,53798</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms3170$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23863808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Xiaonan R.</creatorcontrib><creatorcontrib>Badura, Aleksandra</creatorcontrib><creatorcontrib>Pacheco, Diego A.</creatorcontrib><creatorcontrib>Lynch, Laura A.</creatorcontrib><creatorcontrib>Schneider, Eve R.</creatorcontrib><creatorcontrib>Taylor, Matthew P.</creatorcontrib><creatorcontrib>Hogue, Ian B.</creatorcontrib><creatorcontrib>Enquist, Lynn W.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><creatorcontrib>Wang, Samuel S. -H.</creatorcontrib><title>Fast GCaMPs for improved tracking of neuronal activity</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca
2+
-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain’s Ca
2+
-chelating residues. Second, we find that off-responses to Ca
2+
are rate-limited by dissociation of the RS20 domain from calmodulin’s hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca
2+
and by slow binding to the C-lobe at lower Ca
2+
. We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of
K
D
, allowing coexpression of multiple variants to span an expanded range of Ca
2+
concentrations. Finally, we show that Fast-GCaMPs track natural song in
Drosophila
auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Genetically encoded calcium indicators are commonly used to study cellular activity, but their usefulness is limited by their response kinetics. Here the authors generate indicators with faster responses to calcium events in both
Drosophila melanogaster
and mammalian neurons.</description><subject>631/1647/1888</subject><subject>631/378</subject><subject>Acoustic Stimulation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Auditory Perception - physiology</subject><subject>Binding Sites</subject><subject>Calcium - metabolism</subject><subject>Calmodulin - chemistry</subject><subject>Calmodulin - genetics</subject><subject>Calmodulin - metabolism</subject><subject>Drosophila melanogaster - cytology</subject><subject>Drosophila melanogaster - physiology</subject><subject>Green Fluorescent Proteins - chemistry</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Kinetics</subject><subject>Mice</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>multidisciplinary</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Time Factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkd9LwzAQx4Mobsy9-AdIwRdRqknzq30RZLgpTPRBn0OaJrOzbWbSDvbfG92cU-_lDu7D9753B8AxgpcI4vSqUbauPUYc7oF-AgmKEU_w_k7dA0Pv5zAEzlBKyCHoJThlOIVpH7Cx9G00GcmHJx8Z66KyXji71EXUOqneymYWWRM1unO2kVUkVVsuy3Z1BA6MrLwebvIAvIxvn0d38fRxcj-6mcaKkKSNjcwYTAxlOWQoozpPi7wgipoCJZQSSBFWOFNE8kLmhsNE5gxqTTktEMHc4AG4XusuurzWhdJNsFWJhStr6VbCylL87jTlq5jZpcBpQnAGg8DZRsDZ9077VtSlV7qqZKNt5wUiwRlnGSYBPf2Dzm3nwtZfFGSMUMwDdb6mlLPeO222ZhAUnx8RPx8J8Mmu_S36ff8AXKwBH1rNTLudmf_lPgBKm5WX</recordid><startdate>20130718</startdate><enddate>20130718</enddate><creator>Sun, Xiaonan R.</creator><creator>Badura, Aleksandra</creator><creator>Pacheco, Diego A.</creator><creator>Lynch, Laura A.</creator><creator>Schneider, Eve R.</creator><creator>Taylor, Matthew P.</creator><creator>Hogue, Ian B.</creator><creator>Enquist, Lynn W.</creator><creator>Murthy, Mala</creator><creator>Wang, Samuel S. -H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130718</creationdate><title>Fast GCaMPs for improved tracking of neuronal activity</title><author>Sun, Xiaonan R. ; Badura, Aleksandra ; Pacheco, Diego A. ; Lynch, Laura A. ; Schneider, Eve R. ; Taylor, Matthew P. ; Hogue, Ian B. ; Enquist, Lynn W. ; Murthy, Mala ; Wang, Samuel S. -H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fa9602f56b06195eb8dbd4c5fd125540513c39c4a7dabf702ab60ee575d1437f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/1647/1888</topic><topic>631/378</topic><topic>Acoustic Stimulation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Auditory Perception - physiology</topic><topic>Binding Sites</topic><topic>Calcium - metabolism</topic><topic>Calmodulin - chemistry</topic><topic>Calmodulin - genetics</topic><topic>Calmodulin - metabolism</topic><topic>Drosophila melanogaster - cytology</topic><topic>Drosophila melanogaster - physiology</topic><topic>Green Fluorescent Proteins - chemistry</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Kinetics</topic><topic>Mice</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>multidisciplinary</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Xiaonan R.</creatorcontrib><creatorcontrib>Badura, Aleksandra</creatorcontrib><creatorcontrib>Pacheco, Diego A.</creatorcontrib><creatorcontrib>Lynch, Laura A.</creatorcontrib><creatorcontrib>Schneider, Eve R.</creatorcontrib><creatorcontrib>Taylor, Matthew P.</creatorcontrib><creatorcontrib>Hogue, Ian B.</creatorcontrib><creatorcontrib>Enquist, Lynn W.</creatorcontrib><creatorcontrib>Murthy, Mala</creatorcontrib><creatorcontrib>Wang, Samuel S. -H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Xiaonan R.</au><au>Badura, Aleksandra</au><au>Pacheco, Diego A.</au><au>Lynch, Laura A.</au><au>Schneider, Eve R.</au><au>Taylor, Matthew P.</au><au>Hogue, Ian B.</au><au>Enquist, Lynn W.</au><au>Murthy, Mala</au><au>Wang, Samuel S. -H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast GCaMPs for improved tracking of neuronal activity</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2013-07-18</date><risdate>2013</risdate><volume>4</volume><issue>1</issue><spage>2170</spage><epage>2170</epage><pages>2170-2170</pages><artnum>2170</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The use of genetically encodable calcium indicator proteins to monitor neuronal activity is hampered by slow response times and a narrow Ca
2+
-sensitive range. Here we identify three performance-limiting features of GCaMP3, a popular genetically encodable calcium indicator protein. First, we find that affinity is regulated by the calmodulin domain’s Ca
2+
-chelating residues. Second, we find that off-responses to Ca
2+
are rate-limited by dissociation of the RS20 domain from calmodulin’s hydrophobic pocket. Third, we find that on-responses are limited by fast binding to the N-lobe at high Ca
2+
and by slow binding to the C-lobe at lower Ca
2+
. We develop Fast-GCaMPs, which have up to 20-fold accelerated off-responses and show that they have a 200-fold range of
K
D
, allowing coexpression of multiple variants to span an expanded range of Ca
2+
concentrations. Finally, we show that Fast-GCaMPs track natural song in
Drosophila
auditory neurons and generate rapid responses in mammalian neurons, supporting the utility of our approach.
Genetically encoded calcium indicators are commonly used to study cellular activity, but their usefulness is limited by their response kinetics. Here the authors generate indicators with faster responses to calcium events in both
Drosophila melanogaster
and mammalian neurons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23863808</pmid><doi>10.1038/ncomms3170</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2013-07, Vol.4 (1), p.2170-2170, Article 2170 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3824390 |
source | Springer Nature OA/Free Journals |
subjects | 631/1647/1888 631/378 Acoustic Stimulation Amino Acid Sequence Animals Auditory Perception - physiology Binding Sites Calcium - metabolism Calmodulin - chemistry Calmodulin - genetics Calmodulin - metabolism Drosophila melanogaster - cytology Drosophila melanogaster - physiology Green Fluorescent Proteins - chemistry Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humanities and Social Sciences Kinetics Mice Models, Molecular Molecular Sequence Data multidisciplinary Neurons - cytology Neurons - physiology Protein Structure, Tertiary Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Science Science (multidisciplinary) Time Factors |
title | Fast GCaMPs for improved tracking of neuronal activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20GCaMPs%20for%20improved%20tracking%20of%20neuronal%20activity&rft.jtitle=Nature%20communications&rft.au=Sun,%20Xiaonan%20R.&rft.date=2013-07-18&rft.volume=4&rft.issue=1&rft.spage=2170&rft.epage=2170&rft.pages=2170-2170&rft.artnum=2170&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms3170&rft_dat=%3Cproquest_C6C%3E3022243161%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1400664537&rft_id=info:pmid/23863808&rfr_iscdi=true |