Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes
Uncontrolled release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the reperfusion‐induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability tran...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2011-11, Vol.15 (11), p.2478-2485 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2485 |
---|---|
container_issue | 11 |
container_start_page | 2478 |
container_title | Journal of cellular and molecular medicine |
container_volume | 15 |
creator | Abdallah, Yaser Kasseckert, Sascha A. Iraqi, Wisam Said, Maher Shahzad, Tayyab Erdogan, Ali Neuhof, Christiane Gündüz, Dürsün Schlüter, Klaus‐Dieter Tillmanns, Harald Piper, H. Michael Reusch, H. Peter Ladilov, Yury |
description | Uncontrolled release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the reperfusion‐induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨm. Fura‐2 was used to monitor cytosolic [Ca2+]i or mitochondrial calcium [Ca2+]m, after quenching the cytosolic compartment with MnCl2. Mitochondrial ROS [ROS]m production was detected with MitoSOX Red and mag‐fura‐2 was used to monitor Mg2+ concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨm collapse and disturbance of ATP recovery. Simultaneously, Ca2+ oscillations occurred, [Ca2+]m and [ROS]m increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR‐driven Ca2+ cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca2+ uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca2+ cycling, hypercontracture and necrosis. ROS scavengers (2‐mercaptopropionyl glycine or N‐acetylcysteine) had no effect on these parameters, but reduced [ROS]m. In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca2+ oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca2+ cycling and MPTP promotes the reperfusion‐induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening. |
doi_str_mv | 10.1111/j.1582-4934.2010.01249.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3075960209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4329-36e6acda620a160212c4e45afd5b0d0d9bc8a5e418a686bc18591585b85f3a8b3</originalsourceid><addsrcrecordid>eNqNUctu1DAUjRCIlsIvIEssWKAZ_EhSe4OERjyKWrGBtXVj37SOEjvYCW12LFnyjXwJDh2GxwpvfOXz0D0-RUEY3bJ8nndbVkm-KZUot5zmV8p4qbY3d4rjA3B3PzMp5FHxIKWOUlEzoe4XR5wxpQQ_PS6-nvkJ49jDQhqcrhE92QF_RsxieucvCXhLBjcFcxW8jQ56MmIcEBrXu2khUwSf3OSCJ2OImMgYwxCmPETMxHZOGfr-5ZvzdjZoifPdHBcSWmIgWgeGDEswSxY8LO610Cd8tL9Pio-vX33Yvd2cv39ztnt5vjGl4GojaqzBWKg5BVZTzrgpsaygtVVDLbWqMRIqLJmEWtaNYbJS-RuqRlatANmIk-LFre84NwNagz5n6PUY3QBx0QGc_hvx7kpfhs9aSM5VJbPB071BDJ9mTJMeXDLY9-AxzEkrSuuSM1Fn5pN_mF2Yo8_ptKCnlcrrU5VZ8pZlYkgpYnvYhVG9tq07vRap11L12rb-2ba-ydLHf2Y5CH_V-zvstetx-W9j_W53cbGO4gdGqL41</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075960209</pqid></control><display><type>article</type><title>Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes</title><source>Wiley Online Library Open Access</source><creator>Abdallah, Yaser ; Kasseckert, Sascha A. ; Iraqi, Wisam ; Said, Maher ; Shahzad, Tayyab ; Erdogan, Ali ; Neuhof, Christiane ; Gündüz, Dürsün ; Schlüter, Klaus‐Dieter ; Tillmanns, Harald ; Piper, H. Michael ; Reusch, H. Peter ; Ladilov, Yury</creator><creatorcontrib>Abdallah, Yaser ; Kasseckert, Sascha A. ; Iraqi, Wisam ; Said, Maher ; Shahzad, Tayyab ; Erdogan, Ali ; Neuhof, Christiane ; Gündüz, Dürsün ; Schlüter, Klaus‐Dieter ; Tillmanns, Harald ; Piper, H. Michael ; Reusch, H. Peter ; Ladilov, Yury</creatorcontrib><description>Uncontrolled release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the reperfusion‐induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨm. Fura‐2 was used to monitor cytosolic [Ca2+]i or mitochondrial calcium [Ca2+]m, after quenching the cytosolic compartment with MnCl2. Mitochondrial ROS [ROS]m production was detected with MitoSOX Red and mag‐fura‐2 was used to monitor Mg2+ concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨm collapse and disturbance of ATP recovery. Simultaneously, Ca2+ oscillations occurred, [Ca2+]m and [ROS]m increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR‐driven Ca2+ cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca2+ uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca2+ cycling, hypercontracture and necrosis. ROS scavengers (2‐mercaptopropionyl glycine or N‐acetylcysteine) had no effect on these parameters, but reduced [ROS]m. In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca2+ oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca2+ cycling and MPTP promotes the reperfusion‐induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2010.01249.x</identifier><identifier>PMID: 21199327</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Acetylcysteine ; Acetylcysteine - pharmacology ; Adenosine Triphosphate - metabolism ; Animals ; Calcein ; Calcium (intracellular) ; Calcium (mitochondrial) ; Calcium (reticular) ; Calcium - metabolism ; Calcium influx ; Calcium permeability ; Calcium sequestration ; Calcium signalling ; Cardiac muscle ; cardiac myocytes ; Cardiomyocytes ; Cyclosporine - pharmacology ; Cyclosporins ; Fluoresceins - analysis ; Fura-2 ; Heart ; Investigations ; Ischemia ; Laboratory animals ; Magnesium ; Male ; Membrane permeability ; Membrane Potential, Mitochondrial - drug effects ; Mitochondria ; Mitochondria, Heart - drug effects ; Mitochondria, Heart - metabolism ; Mitochondrial Membrane Transport Proteins - metabolism ; Mitochondrial permeability transition pore ; MPTP ; Myocardial Reperfusion Injury - metabolism ; Myocytes ; Myocytes, Cardiac - physiology ; Necrosis ; Original ; Permeability ; Photonics ; Pores ; Rats ; Rats, Wistar ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; reperfusion injury ; Ruthenium Compounds - pharmacology ; Ryanodine - pharmacology ; Sarcoplasmic reticulum ; Thapsigargin - pharmacology ; Tiopronin - pharmacology</subject><ispartof>Journal of cellular and molecular medicine, 2011-11, Vol.15 (11), p.2478-2485</ispartof><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.</rights><rights>2011. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4329-36e6acda620a160212c4e45afd5b0d0d9bc8a5e418a686bc18591585b85f3a8b3</citedby><cites>FETCH-LOGICAL-c4329-36e6acda620a160212c4e45afd5b0d0d9bc8a5e418a686bc18591585b85f3a8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822958/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822958/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2010.01249.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21199327$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdallah, Yaser</creatorcontrib><creatorcontrib>Kasseckert, Sascha A.</creatorcontrib><creatorcontrib>Iraqi, Wisam</creatorcontrib><creatorcontrib>Said, Maher</creatorcontrib><creatorcontrib>Shahzad, Tayyab</creatorcontrib><creatorcontrib>Erdogan, Ali</creatorcontrib><creatorcontrib>Neuhof, Christiane</creatorcontrib><creatorcontrib>Gündüz, Dürsün</creatorcontrib><creatorcontrib>Schlüter, Klaus‐Dieter</creatorcontrib><creatorcontrib>Tillmanns, Harald</creatorcontrib><creatorcontrib>Piper, H. Michael</creatorcontrib><creatorcontrib>Reusch, H. Peter</creatorcontrib><creatorcontrib>Ladilov, Yury</creatorcontrib><title>Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Uncontrolled release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the reperfusion‐induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨm. Fura‐2 was used to monitor cytosolic [Ca2+]i or mitochondrial calcium [Ca2+]m, after quenching the cytosolic compartment with MnCl2. Mitochondrial ROS [ROS]m production was detected with MitoSOX Red and mag‐fura‐2 was used to monitor Mg2+ concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨm collapse and disturbance of ATP recovery. Simultaneously, Ca2+ oscillations occurred, [Ca2+]m and [ROS]m increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR‐driven Ca2+ cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca2+ uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca2+ cycling, hypercontracture and necrosis. ROS scavengers (2‐mercaptopropionyl glycine or N‐acetylcysteine) had no effect on these parameters, but reduced [ROS]m. In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca2+ oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca2+ cycling and MPTP promotes the reperfusion‐induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.</description><subject>Acetylcysteine</subject><subject>Acetylcysteine - pharmacology</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Calcein</subject><subject>Calcium (intracellular)</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium influx</subject><subject>Calcium permeability</subject><subject>Calcium sequestration</subject><subject>Calcium signalling</subject><subject>Cardiac muscle</subject><subject>cardiac myocytes</subject><subject>Cardiomyocytes</subject><subject>Cyclosporine - pharmacology</subject><subject>Cyclosporins</subject><subject>Fluoresceins - analysis</subject><subject>Fura-2</subject><subject>Heart</subject><subject>Investigations</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>Magnesium</subject><subject>Male</subject><subject>Membrane permeability</subject><subject>Membrane Potential, Mitochondrial - drug effects</subject><subject>Mitochondria</subject><subject>Mitochondria, Heart - drug effects</subject><subject>Mitochondria, Heart - metabolism</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Mitochondrial permeability transition pore</subject><subject>MPTP</subject><subject>Myocardial Reperfusion Injury - metabolism</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - physiology</subject><subject>Necrosis</subject><subject>Original</subject><subject>Permeability</subject><subject>Photonics</subject><subject>Pores</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>reperfusion injury</subject><subject>Ruthenium Compounds - pharmacology</subject><subject>Ryanodine - pharmacology</subject><subject>Sarcoplasmic reticulum</subject><subject>Thapsigargin - pharmacology</subject><subject>Tiopronin - pharmacology</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNUctu1DAUjRCIlsIvIEssWKAZ_EhSe4OERjyKWrGBtXVj37SOEjvYCW12LFnyjXwJDh2GxwpvfOXz0D0-RUEY3bJ8nndbVkm-KZUot5zmV8p4qbY3d4rjA3B3PzMp5FHxIKWOUlEzoe4XR5wxpQQ_PS6-nvkJ49jDQhqcrhE92QF_RsxieucvCXhLBjcFcxW8jQ56MmIcEBrXu2khUwSf3OSCJ2OImMgYwxCmPETMxHZOGfr-5ZvzdjZoifPdHBcSWmIgWgeGDEswSxY8LO610Cd8tL9Pio-vX33Yvd2cv39ztnt5vjGl4GojaqzBWKg5BVZTzrgpsaygtVVDLbWqMRIqLJmEWtaNYbJS-RuqRlatANmIk-LFre84NwNagz5n6PUY3QBx0QGc_hvx7kpfhs9aSM5VJbPB071BDJ9mTJMeXDLY9-AxzEkrSuuSM1Fn5pN_mF2Yo8_ptKCnlcrrU5VZ8pZlYkgpYnvYhVG9tq07vRap11L12rb-2ba-ydLHf2Y5CH_V-zvstetx-W9j_W53cbGO4gdGqL41</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Abdallah, Yaser</creator><creator>Kasseckert, Sascha A.</creator><creator>Iraqi, Wisam</creator><creator>Said, Maher</creator><creator>Shahzad, Tayyab</creator><creator>Erdogan, Ali</creator><creator>Neuhof, Christiane</creator><creator>Gündüz, Dürsün</creator><creator>Schlüter, Klaus‐Dieter</creator><creator>Tillmanns, Harald</creator><creator>Piper, H. Michael</creator><creator>Reusch, H. Peter</creator><creator>Ladilov, Yury</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201111</creationdate><title>Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes</title><author>Abdallah, Yaser ; Kasseckert, Sascha A. ; Iraqi, Wisam ; Said, Maher ; Shahzad, Tayyab ; Erdogan, Ali ; Neuhof, Christiane ; Gündüz, Dürsün ; Schlüter, Klaus‐Dieter ; Tillmanns, Harald ; Piper, H. Michael ; Reusch, H. Peter ; Ladilov, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4329-36e6acda620a160212c4e45afd5b0d0d9bc8a5e418a686bc18591585b85f3a8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Acetylcysteine</topic><topic>Acetylcysteine - pharmacology</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Calcein</topic><topic>Calcium (intracellular)</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium influx</topic><topic>Calcium permeability</topic><topic>Calcium sequestration</topic><topic>Calcium signalling</topic><topic>Cardiac muscle</topic><topic>cardiac myocytes</topic><topic>Cardiomyocytes</topic><topic>Cyclosporine - pharmacology</topic><topic>Cyclosporins</topic><topic>Fluoresceins - analysis</topic><topic>Fura-2</topic><topic>Heart</topic><topic>Investigations</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>Magnesium</topic><topic>Male</topic><topic>Membrane permeability</topic><topic>Membrane Potential, Mitochondrial - drug effects</topic><topic>Mitochondria</topic><topic>Mitochondria, Heart - drug effects</topic><topic>Mitochondria, Heart - metabolism</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Mitochondrial permeability transition pore</topic><topic>MPTP</topic><topic>Myocardial Reperfusion Injury - metabolism</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - physiology</topic><topic>Necrosis</topic><topic>Original</topic><topic>Permeability</topic><topic>Photonics</topic><topic>Pores</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>reperfusion injury</topic><topic>Ruthenium Compounds - pharmacology</topic><topic>Ryanodine - pharmacology</topic><topic>Sarcoplasmic reticulum</topic><topic>Thapsigargin - pharmacology</topic><topic>Tiopronin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdallah, Yaser</creatorcontrib><creatorcontrib>Kasseckert, Sascha A.</creatorcontrib><creatorcontrib>Iraqi, Wisam</creatorcontrib><creatorcontrib>Said, Maher</creatorcontrib><creatorcontrib>Shahzad, Tayyab</creatorcontrib><creatorcontrib>Erdogan, Ali</creatorcontrib><creatorcontrib>Neuhof, Christiane</creatorcontrib><creatorcontrib>Gündüz, Dürsün</creatorcontrib><creatorcontrib>Schlüter, Klaus‐Dieter</creatorcontrib><creatorcontrib>Tillmanns, Harald</creatorcontrib><creatorcontrib>Piper, H. Michael</creatorcontrib><creatorcontrib>Reusch, H. Peter</creatorcontrib><creatorcontrib>Ladilov, Yury</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abdallah, Yaser</au><au>Kasseckert, Sascha A.</au><au>Iraqi, Wisam</au><au>Said, Maher</au><au>Shahzad, Tayyab</au><au>Erdogan, Ali</au><au>Neuhof, Christiane</au><au>Gündüz, Dürsün</au><au>Schlüter, Klaus‐Dieter</au><au>Tillmanns, Harald</au><au>Piper, H. Michael</au><au>Reusch, H. Peter</au><au>Ladilov, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2011-11</date><risdate>2011</risdate><volume>15</volume><issue>11</issue><spage>2478</spage><epage>2485</epage><pages>2478-2485</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Uncontrolled release of Ca2+ from the sarcoplasmic reticulum (SR) contributes to the reperfusion‐induced cardiomyocyte injury, e.g. hypercontracture and necrosis. To find out the underlying cellular mechanisms of this phenomenon, we investigated whether the opening of mitochondrial permeability transition pores (MPTP), resulting in ATP depletion and reactive oxygen species (ROS) formation, may be involved. For this purpose, isolated cardiac myocytes from adult rats were subjected to simulated ischemia and reperfusion. MPTP opening was detected by calcein release and by monitoring the ΔΨm. Fura‐2 was used to monitor cytosolic [Ca2+]i or mitochondrial calcium [Ca2+]m, after quenching the cytosolic compartment with MnCl2. Mitochondrial ROS [ROS]m production was detected with MitoSOX Red and mag‐fura‐2 was used to monitor Mg2+ concentration, which reflects changes in cellular ATP. Necrosis was determined by propidium iodide staining. Reperfusion led to a calcein release from mitochondria, ΔΨm collapse and disturbance of ATP recovery. Simultaneously, Ca2+ oscillations occurred, [Ca2+]m and [ROS]m increased, cells developed hypercontracture and underwent necrosis. Inhibition of the SR‐driven Ca2+ cycling with thapsigargine or ryanodine prevented mitochondrial dysfunction, ROS formation and MPTP opening. Suppression of the mitochondrial Ca2+ uptake (Ru360) or MPTP (cyclosporine A) significantly attenuated Ca2+ cycling, hypercontracture and necrosis. ROS scavengers (2‐mercaptopropionyl glycine or N‐acetylcysteine) had no effect on these parameters, but reduced [ROS]m. In conclusion, MPTP opening occurs early during reperfusion and is due to the Ca2+ oscillations originating primarily from the SR and supported by MPTP. The interplay between Ca2+ cycling and MPTP promotes the reperfusion‐induced cardiomyocyte hypercontracture and necrosis. Mitochondrial ROS formation is a result rather than a cause of MPTP opening.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21199327</pmid><doi>10.1111/j.1582-4934.2010.01249.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2011-11, Vol.15 (11), p.2478-2485 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822958 |
source | Wiley Online Library Open Access |
subjects | Acetylcysteine Acetylcysteine - pharmacology Adenosine Triphosphate - metabolism Animals Calcein Calcium (intracellular) Calcium (mitochondrial) Calcium (reticular) Calcium - metabolism Calcium influx Calcium permeability Calcium sequestration Calcium signalling Cardiac muscle cardiac myocytes Cardiomyocytes Cyclosporine - pharmacology Cyclosporins Fluoresceins - analysis Fura-2 Heart Investigations Ischemia Laboratory animals Magnesium Male Membrane permeability Membrane Potential, Mitochondrial - drug effects Mitochondria Mitochondria, Heart - drug effects Mitochondria, Heart - metabolism Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial permeability transition pore MPTP Myocardial Reperfusion Injury - metabolism Myocytes Myocytes, Cardiac - physiology Necrosis Original Permeability Photonics Pores Rats Rats, Wistar Reactive oxygen species Reactive Oxygen Species - metabolism Reperfusion reperfusion injury Ruthenium Compounds - pharmacology Ryanodine - pharmacology Sarcoplasmic reticulum Thapsigargin - pharmacology Tiopronin - pharmacology |
title | Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion‐induced injury of cardiac myocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T15%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interplay%20between%20Ca2+%20cycling%20and%20mitochondrial%20permeability%20transition%20pores%20promotes%20reperfusion%E2%80%90induced%20injury%20of%20cardiac%20myocytes&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Abdallah,%20Yaser&rft.date=2011-11&rft.volume=15&rft.issue=11&rft.spage=2478&rft.epage=2485&rft.pages=2478-2485&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2010.01249.x&rft_dat=%3Cproquest_24P%3E3075960209%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075960209&rft_id=info:pmid/21199327&rfr_iscdi=true |