Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics
The existence of endothelial progenitor cells (EPC) with high cell‐cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and g...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2009-03, Vol.13 (3), p.522-534 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 3 |
container_start_page | 522 |
container_title | Journal of cellular and molecular medicine |
container_volume | 13 |
creator | Nguyen, Van Anh Fürhapter, Christina Obexer, Petra Stössel, Hella Romani, Nikolaus Sepp, Norbert |
description | The existence of endothelial progenitor cells (EPC) with high cell‐cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC‐derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM‐1), CD105 (endoglin), CD144 (VE‐cadherin), Tie‐1, Tie‐2, VEGFR‐1/Flt‐1 and VEGFR‐2/Flk‐1. Few EPC‐derived cells became positive for LYVE‐1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell‐specific markers such as podoplanin and Prox‐1. Functional tests demonstrated that the cobblestone EPC‐derived cells up‐regulated CD54 and CD62E expression in response to TNF‐α, incorporated DiI‐acetylated low‐density liproprotein and formed cord‐ and tubular‐like structures with capillary lumen in three‐dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel‐Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC‐derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system. |
doi_str_mv | 10.1111/j.1582-4934.2008.00340.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822512</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67133325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4570-f6d9b13eed22a5111ad54bf8af81562c1232219869eddf4dad7eab00bc435193</originalsourceid><addsrcrecordid>eNqNkstu1DAUhi0EomXgFZAFEpsyg29JnEWRUFpuasWme8uJTxqPnDjYCZ15Cl4ZhxmVi4SEN7Z8vvPL_s-PEKZkQ9N6s93QTLK1KLnYMELkhhAuyGb3AJ3eFx4ez1RyeYKexLhNUE55-RidUCkoyVh-ir5fDsZPHTirHW7AuYjb4Hvc-GBw7bw3uLqgnJ9VF1yc4TH4Wxjs5EPEsdMB8NjB4Kf9aJvXuJ2HZrJ-SFJ6MDiRgGE3Bogx3S7NrXWAo-2t08FOFiK-s1OH3b4fOz3ZJj5Fj1rtIjw77it08_7ypvq4vvry4VP17mrdiKwg6zY3ZU05gGFMZ8kSbTJRt1K3kmY5ayjjjNFS5iUY0wqjTQG6JqRuBM9oyVfo7UF2nOseTAPDFLRTY7C9DnvltVV_VgbbqVv_TXHJWJbUV-jVUSD4rzPESfU2Lv7pAfwcVV4k0zjLEvjyL3Dr55AsioqTQhQ5F2KhXvyLYrSgJc1pkSB5gJrgYwzQ3r-XErXkQm3VMnK1jF8tuVA_c6F2qfX57__91XgMQgLOD8BdmtD-v4XV5-r6Op34D6DyyNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3074763445</pqid></control><display><type>article</type><title>Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics</title><source>Wiley Online Library Open Access</source><creator>Nguyen, Van Anh ; Fürhapter, Christina ; Obexer, Petra ; Stössel, Hella ; Romani, Nikolaus ; Sepp, Norbert</creator><creatorcontrib>Nguyen, Van Anh ; Fürhapter, Christina ; Obexer, Petra ; Stössel, Hella ; Romani, Nikolaus ; Sepp, Norbert</creatorcontrib><description>The existence of endothelial progenitor cells (EPC) with high cell‐cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC‐derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM‐1), CD105 (endoglin), CD144 (VE‐cadherin), Tie‐1, Tie‐2, VEGFR‐1/Flt‐1 and VEGFR‐2/Flk‐1. Few EPC‐derived cells became positive for LYVE‐1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell‐specific markers such as podoplanin and Prox‐1. Functional tests demonstrated that the cobblestone EPC‐derived cells up‐regulated CD54 and CD62E expression in response to TNF‐α, incorporated DiI‐acetylated low‐density liproprotein and formed cord‐ and tubular‐like structures with capillary lumen in three‐dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel‐Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC‐derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2008.00340.x</identifier><identifier>PMID: 18410526</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>AC133 Antigen ; Adenosine ; Angiogenesis ; Antibodies ; Antigens, CD - metabolism ; Antigens, CD34 - metabolism ; Blood ; Blood vessels ; Cardiovascular disease ; CD105 antigen ; CD34 antigen ; CD36 antigen ; Cell adhesion & migration ; Cell adhesion molecules ; Cell culture ; Cell cycle ; Cell Differentiation ; Cell Shape ; Cell therapy ; Cells, Cultured ; Child ; Child, Preschool ; Cord blood ; Cytokines ; DNA microarrays ; Down-Regulation ; Electron microscopy ; Endoglin ; endothelial cell differentiation ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - metabolism ; Endothelial Cells - ultrastructure ; Endothelium ; Epidermal growth factor ; Extracellular matrix ; Fetal Blood - cytology ; Flow cytometry ; Gene expression ; Gene Expression Profiling ; Glycoproteins - metabolism ; Hematopoietic stem cells ; Hemopoiesis ; Humans ; Infant ; Infant, Newborn ; Intercellular adhesion molecule 1 ; lymphatic capillaries ; Lymphatic system ; Lymphatic Vessels - cytology ; Magnetic fields ; Male ; Morphology ; Oligonucleotide Array Sequence Analysis ; Penicillin ; Peptides - metabolism ; Phenotype ; Progenitor cells ; stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Stem Cells - ultrastructure ; Tumor necrosis factor-α ; Umbilical cord ; Umbilical vein ; Up-Regulation ; Vascular endothelial growth factor ; Vascular endothelial growth factor receptor 2 ; Vascular endothelial growth factor receptors ; Vascularization ; vasculogenesis ; Weibel-Palade Bodies - ultrastructure</subject><ispartof>Journal of cellular and molecular medicine, 2009-03, Vol.13 (3), p.522-534</ispartof><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>Copyright Blackwell Publishing Ltd. Mar 2009</rights><rights>2009. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2009 The Authors Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4570-f6d9b13eed22a5111ad54bf8af81562c1232219869eddf4dad7eab00bc435193</citedby><cites>FETCH-LOGICAL-c4570-f6d9b13eed22a5111ad54bf8af81562c1232219869eddf4dad7eab00bc435193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822512/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822512/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2008.00340.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18410526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Van Anh</creatorcontrib><creatorcontrib>Fürhapter, Christina</creatorcontrib><creatorcontrib>Obexer, Petra</creatorcontrib><creatorcontrib>Stössel, Hella</creatorcontrib><creatorcontrib>Romani, Nikolaus</creatorcontrib><creatorcontrib>Sepp, Norbert</creatorcontrib><title>Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>The existence of endothelial progenitor cells (EPC) with high cell‐cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC‐derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM‐1), CD105 (endoglin), CD144 (VE‐cadherin), Tie‐1, Tie‐2, VEGFR‐1/Flt‐1 and VEGFR‐2/Flk‐1. Few EPC‐derived cells became positive for LYVE‐1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell‐specific markers such as podoplanin and Prox‐1. Functional tests demonstrated that the cobblestone EPC‐derived cells up‐regulated CD54 and CD62E expression in response to TNF‐α, incorporated DiI‐acetylated low‐density liproprotein and formed cord‐ and tubular‐like structures with capillary lumen in three‐dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel‐Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC‐derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.</description><subject>AC133 Antigen</subject><subject>Adenosine</subject><subject>Angiogenesis</subject><subject>Antibodies</subject><subject>Antigens, CD - metabolism</subject><subject>Antigens, CD34 - metabolism</subject><subject>Blood</subject><subject>Blood vessels</subject><subject>Cardiovascular disease</subject><subject>CD105 antigen</subject><subject>CD34 antigen</subject><subject>CD36 antigen</subject><subject>Cell adhesion & migration</subject><subject>Cell adhesion molecules</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell Differentiation</subject><subject>Cell Shape</subject><subject>Cell therapy</subject><subject>Cells, Cultured</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cord blood</subject><subject>Cytokines</subject><subject>DNA microarrays</subject><subject>Down-Regulation</subject><subject>Electron microscopy</subject><subject>Endoglin</subject><subject>endothelial cell differentiation</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - ultrastructure</subject><subject>Endothelium</subject><subject>Epidermal growth factor</subject><subject>Extracellular matrix</subject><subject>Fetal Blood - cytology</subject><subject>Flow cytometry</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Glycoproteins - metabolism</subject><subject>Hematopoietic stem cells</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Intercellular adhesion molecule 1</subject><subject>lymphatic capillaries</subject><subject>Lymphatic system</subject><subject>Lymphatic Vessels - cytology</subject><subject>Magnetic fields</subject><subject>Male</subject><subject>Morphology</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Penicillin</subject><subject>Peptides - metabolism</subject><subject>Phenotype</subject><subject>Progenitor cells</subject><subject>stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Stem Cells - ultrastructure</subject><subject>Tumor necrosis factor-α</subject><subject>Umbilical cord</subject><subject>Umbilical vein</subject><subject>Up-Regulation</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular endothelial growth factor receptor 2</subject><subject>Vascular endothelial growth factor receptors</subject><subject>Vascularization</subject><subject>vasculogenesis</subject><subject>Weibel-Palade Bodies - ultrastructure</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstu1DAUhi0EomXgFZAFEpsyg29JnEWRUFpuasWme8uJTxqPnDjYCZ15Cl4ZhxmVi4SEN7Z8vvPL_s-PEKZkQ9N6s93QTLK1KLnYMELkhhAuyGb3AJ3eFx4ez1RyeYKexLhNUE55-RidUCkoyVh-ir5fDsZPHTirHW7AuYjb4Hvc-GBw7bw3uLqgnJ9VF1yc4TH4Wxjs5EPEsdMB8NjB4Kf9aJvXuJ2HZrJ-SFJ6MDiRgGE3Bogx3S7NrXWAo-2t08FOFiK-s1OH3b4fOz3ZJj5Fj1rtIjw77it08_7ypvq4vvry4VP17mrdiKwg6zY3ZU05gGFMZ8kSbTJRt1K3kmY5ayjjjNFS5iUY0wqjTQG6JqRuBM9oyVfo7UF2nOseTAPDFLRTY7C9DnvltVV_VgbbqVv_TXHJWJbUV-jVUSD4rzPESfU2Lv7pAfwcVV4k0zjLEvjyL3Dr55AsioqTQhQ5F2KhXvyLYrSgJc1pkSB5gJrgYwzQ3r-XErXkQm3VMnK1jF8tuVA_c6F2qfX57__91XgMQgLOD8BdmtD-v4XV5-r6Op34D6DyyNo</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Nguyen, Van Anh</creator><creator>Fürhapter, Christina</creator><creator>Obexer, Petra</creator><creator>Stössel, Hella</creator><creator>Romani, Nikolaus</creator><creator>Sepp, Norbert</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200903</creationdate><title>Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics</title><author>Nguyen, Van Anh ; Fürhapter, Christina ; Obexer, Petra ; Stössel, Hella ; Romani, Nikolaus ; Sepp, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4570-f6d9b13eed22a5111ad54bf8af81562c1232219869eddf4dad7eab00bc435193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AC133 Antigen</topic><topic>Adenosine</topic><topic>Angiogenesis</topic><topic>Antibodies</topic><topic>Antigens, CD - metabolism</topic><topic>Antigens, CD34 - metabolism</topic><topic>Blood</topic><topic>Blood vessels</topic><topic>Cardiovascular disease</topic><topic>CD105 antigen</topic><topic>CD34 antigen</topic><topic>CD36 antigen</topic><topic>Cell adhesion & migration</topic><topic>Cell adhesion molecules</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell Differentiation</topic><topic>Cell Shape</topic><topic>Cell therapy</topic><topic>Cells, Cultured</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cord blood</topic><topic>Cytokines</topic><topic>DNA microarrays</topic><topic>Down-Regulation</topic><topic>Electron microscopy</topic><topic>Endoglin</topic><topic>endothelial cell differentiation</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - ultrastructure</topic><topic>Endothelium</topic><topic>Epidermal growth factor</topic><topic>Extracellular matrix</topic><topic>Fetal Blood - cytology</topic><topic>Flow cytometry</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Glycoproteins - metabolism</topic><topic>Hematopoietic stem cells</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Intercellular adhesion molecule 1</topic><topic>lymphatic capillaries</topic><topic>Lymphatic system</topic><topic>Lymphatic Vessels - cytology</topic><topic>Magnetic fields</topic><topic>Male</topic><topic>Morphology</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Penicillin</topic><topic>Peptides - metabolism</topic><topic>Phenotype</topic><topic>Progenitor cells</topic><topic>stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Stem Cells - ultrastructure</topic><topic>Tumor necrosis factor-α</topic><topic>Umbilical cord</topic><topic>Umbilical vein</topic><topic>Up-Regulation</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular endothelial growth factor receptor 2</topic><topic>Vascular endothelial growth factor receptors</topic><topic>Vascularization</topic><topic>vasculogenesis</topic><topic>Weibel-Palade Bodies - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Van Anh</creatorcontrib><creatorcontrib>Fürhapter, Christina</creatorcontrib><creatorcontrib>Obexer, Petra</creatorcontrib><creatorcontrib>Stössel, Hella</creatorcontrib><creatorcontrib>Romani, Nikolaus</creatorcontrib><creatorcontrib>Sepp, Norbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nguyen, Van Anh</au><au>Fürhapter, Christina</au><au>Obexer, Petra</au><au>Stössel, Hella</au><au>Romani, Nikolaus</au><au>Sepp, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2009-03</date><risdate>2009</risdate><volume>13</volume><issue>3</issue><spage>522</spage><epage>534</epage><pages>522-534</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>The existence of endothelial progenitor cells (EPC) with high cell‐cycle rate in human umbilical cord blood has been recently shown and represents a challenging strategy for therapeutic neovascularization. To enhance knowledge for future cellular therapy, we compared the phenotypic, functional and gene expression differences between EPC‐derived cells generated from cord blood CD34+ cells, and lymphatic and macrovascular endothelial cells (EC) isolated from human foreskins and umbilical veins, respectively. Under appropriate culture conditions, EPC developed into fully matured EC with expression of similar endothelial markers as lymphatic and macrovascular EC, including CD31, CD36, von Willebrand factor FVIII, CD54 (ICAM‐1), CD105 (endoglin), CD144 (VE‐cadherin), Tie‐1, Tie‐2, VEGFR‐1/Flt‐1 and VEGFR‐2/Flk‐1. Few EPC‐derived cells became positive for LYVE‐1, indicating their origin from haematopoietic stem cells. However they lacked expression of other lymphatic cell‐specific markers such as podoplanin and Prox‐1. Functional tests demonstrated that the cobblestone EPC‐derived cells up‐regulated CD54 and CD62E expression in response to TNF‐α, incorporated DiI‐acetylated low‐density liproprotein and formed cord‐ and tubular‐like structures with capillary lumen in three‐dimensional collagen culture – all characteristic features of the vascular endothelium. Structures compatible with Weibel‐Palade bodies were also found by electron microscopy. Gene microarray profiling revealed that only a small percentage of genes investigated showed differential expression in EPC‐derived cells and lymphatic EC. Among them were adhesion molecules, extracellular matrix proteins and cytokines. Our data point to the close lineage relationship of both types of vascular cells and support the theory of a venous origin of the lymphatic system.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18410526</pmid><doi>10.1111/j.1582-4934.2008.00340.x</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2009-03, Vol.13 (3), p.522-534 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822512 |
source | Wiley Online Library Open Access |
subjects | AC133 Antigen Adenosine Angiogenesis Antibodies Antigens, CD - metabolism Antigens, CD34 - metabolism Blood Blood vessels Cardiovascular disease CD105 antigen CD34 antigen CD36 antigen Cell adhesion & migration Cell adhesion molecules Cell culture Cell cycle Cell Differentiation Cell Shape Cell therapy Cells, Cultured Child Child, Preschool Cord blood Cytokines DNA microarrays Down-Regulation Electron microscopy Endoglin endothelial cell differentiation Endothelial cells Endothelial Cells - cytology Endothelial Cells - metabolism Endothelial Cells - ultrastructure Endothelium Epidermal growth factor Extracellular matrix Fetal Blood - cytology Flow cytometry Gene expression Gene Expression Profiling Glycoproteins - metabolism Hematopoietic stem cells Hemopoiesis Humans Infant Infant, Newborn Intercellular adhesion molecule 1 lymphatic capillaries Lymphatic system Lymphatic Vessels - cytology Magnetic fields Male Morphology Oligonucleotide Array Sequence Analysis Penicillin Peptides - metabolism Phenotype Progenitor cells stem cells Stem Cells - cytology Stem Cells - metabolism Stem Cells - ultrastructure Tumor necrosis factor-α Umbilical cord Umbilical vein Up-Regulation Vascular endothelial growth factor Vascular endothelial growth factor receptor 2 Vascular endothelial growth factor receptors Vascularization vasculogenesis Weibel-Palade Bodies - ultrastructure |
title | Endothelial cells from cord blood CD133+CD34+ progenitors share phenotypic, functional and gene expression profile similarities with lymphatics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endothelial%20cells%20from%20cord%20blood%20CD133+CD34+%20progenitors%20share%20phenotypic,%20functional%20and%20gene%20expression%20profile%20similarities%20with%20lymphatics&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Nguyen,%20Van%20Anh&rft.date=2009-03&rft.volume=13&rft.issue=3&rft.spage=522&rft.epage=534&rft.pages=522-534&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2008.00340.x&rft_dat=%3Cproquest_24P%3E67133325%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3074763445&rft_id=info:pmid/18410526&rfr_iscdi=true |