Metabolic profiling reveals key metabolic features of renal cell carcinoma
Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were a...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2011-01, Vol.15 (1), p.109-118 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Journal of cellular and molecular medicine |
container_volume | 15 |
creator | Catchpole, Gareth Platzer, Alexander Weikert, Cornelia Kempkensteffen, Carsten Johannsen, Manfred Krause, Hans Jung, Klaus Miller, Kurt Willmitzer, Lothar Selbig, Joachim Weikert, Steffen |
description | Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α‐tocopherol, hippuric acid, myoinositol, fructose‐1‐phosphate and glucose‐1‐phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC. |
doi_str_mv | 10.1111/j.1582-4934.2009.00939.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>847432862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5019-47ae28baec31aa627d923073006ae965e0ae0010969e2062c2f6cca1e6ac9b03</originalsourceid><addsrcrecordid>eNqNUctO4zAUtdAgYIBfQJFYzKrBj8SxFyChCmYGUbFhb92aG3BJ4mI3QP8eh1blscKS7Sudh-7RISRjNGfpnMxyVio-KrQock6pztMVOn_dInsb4Nd6ZkqoXfI7xhmlQjKhd8gu06ooFav2yNUEFzD1jbPZPPjaNa67zwI-IzQxe8Rl1m7wGmHRB4yZrxOjgyaz2KQHgnWdb-GAbNdJhYfrf5_cXl7cjv-Nrm_-_h-fX49sSZkeFRUgV1NAKxiA5NWd5oJWglIJqGWJFJBSRrXUyKnkltfSWmAoweopFfvkbGU776ct3lnsFgEaMw-uhbA0Hpz5inTuwdz7ZyMU54VWyeDP2iD4px7jwrQuDlGgQ99Ho4qqEFxJnpjH35gz34eUPJq0calLpfngp1YsG3yMAevNLoyaoS4zM0MTZmjFDHWZ97rMa5Iefc7yIVz3kwinK8KLa3D5Y2NzNZ5M0iTeABhspIA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3075958928</pqid></control><display><type>article</type><title>Metabolic profiling reveals key metabolic features of renal cell carcinoma</title><source>Wiley-Blackwell Open Access Titles</source><creator>Catchpole, Gareth ; Platzer, Alexander ; Weikert, Cornelia ; Kempkensteffen, Carsten ; Johannsen, Manfred ; Krause, Hans ; Jung, Klaus ; Miller, Kurt ; Willmitzer, Lothar ; Selbig, Joachim ; Weikert, Steffen</creator><creatorcontrib>Catchpole, Gareth ; Platzer, Alexander ; Weikert, Cornelia ; Kempkensteffen, Carsten ; Johannsen, Manfred ; Krause, Hans ; Jung, Klaus ; Miller, Kurt ; Willmitzer, Lothar ; Selbig, Joachim ; Weikert, Steffen</creatorcontrib><description>Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α‐tocopherol, hippuric acid, myoinositol, fructose‐1‐phosphate and glucose‐1‐phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/j.1582-4934.2009.00939.x</identifier><identifier>PMID: 19845817</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adult ; Aged ; Amino acids ; Arachidonic acid ; Biomarkers ; Biomarkers, Tumor - metabolism ; Carcinoma, Renal Cell - metabolism ; Carcinoma, Renal Cell - pathology ; Classification ; Decision trees ; Fatty acids ; Female ; Females ; Glucose metabolism ; Glucose-1-phosphate ; Humans ; Inositol phosphate ; Kidney cancer ; Kidney Neoplasms - metabolism ; Kidney Neoplasms - pathology ; Male ; Mass spectroscopy ; Metabolic pathways ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; metastasis ; Middle Aged ; Phenotypes ; Prognosis ; Renal cell carcinoma ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Tricarboxylic acid cycle ; Tumor Cells, Cultured ; Tumors ; Uracil ; Vitamin E</subject><ispartof>Journal of cellular and molecular medicine, 2011-01, Vol.15 (1), p.109-118</ispartof><rights>2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd</rights><rights>2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.</rights><rights>2011. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2011 The Author Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5019-47ae28baec31aa627d923073006ae965e0ae0010969e2062c2f6cca1e6ac9b03</citedby><cites>FETCH-LOGICAL-c5019-47ae28baec31aa627d923073006ae965e0ae0010969e2062c2f6cca1e6ac9b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3822498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,1414,11545,27907,27908,45557,45558,46035,46459,53774,53776</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1582-4934.2009.00939.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19845817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Catchpole, Gareth</creatorcontrib><creatorcontrib>Platzer, Alexander</creatorcontrib><creatorcontrib>Weikert, Cornelia</creatorcontrib><creatorcontrib>Kempkensteffen, Carsten</creatorcontrib><creatorcontrib>Johannsen, Manfred</creatorcontrib><creatorcontrib>Krause, Hans</creatorcontrib><creatorcontrib>Jung, Klaus</creatorcontrib><creatorcontrib>Miller, Kurt</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Selbig, Joachim</creatorcontrib><creatorcontrib>Weikert, Steffen</creatorcontrib><title>Metabolic profiling reveals key metabolic features of renal cell carcinoma</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α‐tocopherol, hippuric acid, myoinositol, fructose‐1‐phosphate and glucose‐1‐phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.</description><subject>Adult</subject><subject>Aged</subject><subject>Amino acids</subject><subject>Arachidonic acid</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Carcinoma, Renal Cell - metabolism</subject><subject>Carcinoma, Renal Cell - pathology</subject><subject>Classification</subject><subject>Decision trees</subject><subject>Fatty acids</subject><subject>Female</subject><subject>Females</subject><subject>Glucose metabolism</subject><subject>Glucose-1-phosphate</subject><subject>Humans</subject><subject>Inositol phosphate</subject><subject>Kidney cancer</subject><subject>Kidney Neoplasms - metabolism</subject><subject>Kidney Neoplasms - pathology</subject><subject>Male</subject><subject>Mass spectroscopy</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>metastasis</subject><subject>Middle Aged</subject><subject>Phenotypes</subject><subject>Prognosis</subject><subject>Renal cell carcinoma</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Tricarboxylic acid cycle</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Uracil</subject><subject>Vitamin E</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUctO4zAUtdAgYIBfQJFYzKrBj8SxFyChCmYGUbFhb92aG3BJ4mI3QP8eh1blscKS7Sudh-7RISRjNGfpnMxyVio-KrQock6pztMVOn_dInsb4Nd6ZkqoXfI7xhmlQjKhd8gu06ooFav2yNUEFzD1jbPZPPjaNa67zwI-IzQxe8Rl1m7wGmHRB4yZrxOjgyaz2KQHgnWdb-GAbNdJhYfrf5_cXl7cjv-Nrm_-_h-fX49sSZkeFRUgV1NAKxiA5NWd5oJWglIJqGWJFJBSRrXUyKnkltfSWmAoweopFfvkbGU776ct3lnsFgEaMw-uhbA0Hpz5inTuwdz7ZyMU54VWyeDP2iD4px7jwrQuDlGgQ99Ho4qqEFxJnpjH35gz34eUPJq0calLpfngp1YsG3yMAevNLoyaoS4zM0MTZmjFDHWZ97rMa5Iefc7yIVz3kwinK8KLa3D5Y2NzNZ5M0iTeABhspIA</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Catchpole, Gareth</creator><creator>Platzer, Alexander</creator><creator>Weikert, Cornelia</creator><creator>Kempkensteffen, Carsten</creator><creator>Johannsen, Manfred</creator><creator>Krause, Hans</creator><creator>Jung, Klaus</creator><creator>Miller, Kurt</creator><creator>Willmitzer, Lothar</creator><creator>Selbig, Joachim</creator><creator>Weikert, Steffen</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201101</creationdate><title>Metabolic profiling reveals key metabolic features of renal cell carcinoma</title><author>Catchpole, Gareth ; Platzer, Alexander ; Weikert, Cornelia ; Kempkensteffen, Carsten ; Johannsen, Manfred ; Krause, Hans ; Jung, Klaus ; Miller, Kurt ; Willmitzer, Lothar ; Selbig, Joachim ; Weikert, Steffen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5019-47ae28baec31aa627d923073006ae965e0ae0010969e2062c2f6cca1e6ac9b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Amino acids</topic><topic>Arachidonic acid</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Carcinoma, Renal Cell - metabolism</topic><topic>Carcinoma, Renal Cell - pathology</topic><topic>Classification</topic><topic>Decision trees</topic><topic>Fatty acids</topic><topic>Female</topic><topic>Females</topic><topic>Glucose metabolism</topic><topic>Glucose-1-phosphate</topic><topic>Humans</topic><topic>Inositol phosphate</topic><topic>Kidney cancer</topic><topic>Kidney Neoplasms - metabolism</topic><topic>Kidney Neoplasms - pathology</topic><topic>Male</topic><topic>Mass spectroscopy</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>metastasis</topic><topic>Middle Aged</topic><topic>Phenotypes</topic><topic>Prognosis</topic><topic>Renal cell carcinoma</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Tricarboxylic acid cycle</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Uracil</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Catchpole, Gareth</creatorcontrib><creatorcontrib>Platzer, Alexander</creatorcontrib><creatorcontrib>Weikert, Cornelia</creatorcontrib><creatorcontrib>Kempkensteffen, Carsten</creatorcontrib><creatorcontrib>Johannsen, Manfred</creatorcontrib><creatorcontrib>Krause, Hans</creatorcontrib><creatorcontrib>Jung, Klaus</creatorcontrib><creatorcontrib>Miller, Kurt</creatorcontrib><creatorcontrib>Willmitzer, Lothar</creatorcontrib><creatorcontrib>Selbig, Joachim</creatorcontrib><creatorcontrib>Weikert, Steffen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Catchpole, Gareth</au><au>Platzer, Alexander</au><au>Weikert, Cornelia</au><au>Kempkensteffen, Carsten</au><au>Johannsen, Manfred</au><au>Krause, Hans</au><au>Jung, Klaus</au><au>Miller, Kurt</au><au>Willmitzer, Lothar</au><au>Selbig, Joachim</au><au>Weikert, Steffen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic profiling reveals key metabolic features of renal cell carcinoma</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2011-01</date><risdate>2011</risdate><volume>15</volume><issue>1</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. α‐tocopherol, hippuric acid, myoinositol, fructose‐1‐phosphate and glucose‐1‐phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19845817</pmid><doi>10.1111/j.1582-4934.2009.00939.x</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2011-01, Vol.15 (1), p.109-118 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3822498 |
source | Wiley-Blackwell Open Access Titles |
subjects | Adult Aged Amino acids Arachidonic acid Biomarkers Biomarkers, Tumor - metabolism Carcinoma, Renal Cell - metabolism Carcinoma, Renal Cell - pathology Classification Decision trees Fatty acids Female Females Glucose metabolism Glucose-1-phosphate Humans Inositol phosphate Kidney cancer Kidney Neoplasms - metabolism Kidney Neoplasms - pathology Male Mass spectroscopy Metabolic pathways Metabolism Metabolites Metabolome Metabolomics metastasis Middle Aged Phenotypes Prognosis Renal cell carcinoma Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Tricarboxylic acid cycle Tumor Cells, Cultured Tumors Uracil Vitamin E |
title | Metabolic profiling reveals key metabolic features of renal cell carcinoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A29%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20profiling%20reveals%20key%20metabolic%20features%20of%20renal%20cell%20carcinoma&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Catchpole,%20Gareth&rft.date=2011-01&rft.volume=15&rft.issue=1&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/j.1582-4934.2009.00939.x&rft_dat=%3Cproquest_24P%3E847432862%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3075958928&rft_id=info:pmid/19845817&rfr_iscdi=true |