Serum- and Glucocorticoid-induced Protein Kinase 1 (SGK1) Is Regulated by Store-operated Ca2+ Entry and Mediates Cytoprotection against Necrotic Cell Death
Serum and glucocorticoid-regulated kinase 1 (SGK1) encodes a phosphatidylinositol 3-kinase-dependent serine/threonine kinase that is rapidly induced in response to cellular stressors and is an important cell survival signal. Previous studies have suggested that an increase in cytoplasmic Ca2+ concen...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2013-11, Vol.288 (45), p.32708-32719 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serum and glucocorticoid-regulated kinase 1 (SGK1) encodes a phosphatidylinositol 3-kinase-dependent serine/threonine kinase that is rapidly induced in response to cellular stressors and is an important cell survival signal. Previous studies have suggested that an increase in cytoplasmic Ca2+ concentration ([Ca2+]c) is required for increased SGK1 expression, but the subcellular source of Ca2+ regulating SGK1 transcription remains uncertain. Activation of endoplasmic reticulum stress (ERS) with thapsigargin (TG) increased SGK1 mRNA and protein expression in MDA-MB-231 cells. Intracellular Ca2+ imaging revealed that store-operated Ca2+ entry played a prominent role in SGK1 induction by TG. Neither ERS nor release of Ca2+ from the ER was sufficient to activate SGK1. Prolonged elevation of intracellular Ca2+ levels, however, triggered cell death with a much greater proportion of the cells undergoing necrosis rather than apoptosis. A relative increase in the percentage of cells undergoing necrosis was observed in cells expressing a short hairpin RNA targeted to the SGK1 gene. Necrotic cell death evoked by cytoplasmic Ca2+ overloading was associated with persistent hyperpolarization of the inner mitochondrial membrane and a modest increase in calpain activation, but did not involve detectable caspase 3 or caspase 7 activation. The effects of cytoplasmic Ca2+ overloading on mitochondrial membrane potential were significantly reduced in cells expressing SGK1 compared with SGK1-depleted cells. Our findings indicate that store-operated Ca2+ entry regulates SGK1 expression in epithelial cells and suggest that SGK1-dependent cytoprotective signaling involves effects on maintaining mitochondrial function.
Background: Mechanisms underlying SGK1 activation are incompletely understood in epithelial cells.
Results: Store-operated Ca2+ entry up-regulates SGK1, thereby modulating the lethal effects of Ca2+ overloading on mitochondrial membrane potential.
Conclusion: Ca2+-induced SGK1 activates cytoprotective signaling and modifies mitochondrial function in epithelial cells.
Significance: This work reveals a cytoprotective role for SGK1 in necrosis and has potential relevance for epithelial cell protection and cancer treatment. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M113.507210 |