Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior

•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biochemical sciences (Amsterdam. Regular ed.) 2013-11, Vol.38 (11), p.566-575
Hauptverfasser: Plate, Lars, Marletta, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 11
container_start_page 566
container_title Trends in biochemical sciences (Amsterdam. Regular ed.)
container_volume 38
creator Plate, Lars
Marletta, Michael A.
description •We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis. Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.
doi_str_mv 10.1016/j.tibs.2013.08.008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3819143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968000413001540</els_id><sourcerecordid>1505344183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpaTbbvkAPrY-92JmRZFuGUgghaQohObSB3oQsjzdabGsreZfm7aNl09BeQg5CA_rm1wwfYx8QCgSsTtbF7NpYcEBRgCoA1Cu2QFHxXApevWYLaCqVA4A8YscxrgGwrOvyLTviElFgwxfs4trNwdnM_3Ed5ZGm6KZVdplf3_zKNsHP5KaYrfyOwpS1xs4UnBky68dxO6WipTuzcz68Y296M0R6_3gv2e3F-c-zy_zq5tv3s9Or3FaIc96TSt8K4JxbMLyRpWm4MtAiNJAqbLGuVd1WypZKEimjeG1s2VLXy16RWLKvh9zNth2pszTNwQx6E9xowr32xun_XyZ3p9P4WihsUIoU8PkxIPjfW4qzHl20NAxmIr-NGksohZSoXoDKhlcg66p5ASqlaNLqKqH8gNrgYwzUPw2PoPda9Vrvteq9Vg1KJ62p6eO_az-1_PWYgE8HoDdem1VwUd_-SAlVsg-Cp7NkXw4EJT07R0FH62iy1LlAdtadd89N8ACSZrwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444393198</pqid></control><display><type>article</type><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Plate, Lars ; Marletta, Michael A.</creator><creatorcontrib>Plate, Lars ; Marletta, Michael A.</creatorcontrib><description>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis. Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</description><identifier>ISSN: 0968-0004</identifier><identifier>EISSN: 1362-4326</identifier><identifier>DOI: 10.1016/j.tibs.2013.08.008</identifier><identifier>PMID: 24113192</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria ; Bacteria - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; biofilm ; cyclic-di-GMP ; eukaryotic cells ; guanylate cyclase ; H-NOX ; Heme - metabolism ; mammals ; metabolism ; Models, Molecular ; nitric oxide ; Nitric Oxide - metabolism ; oxygen ; proteins ; quorum sensing ; signal transduction ; symbiosis ; two-component signaling</subject><ispartof>Trends in biochemical sciences (Amsterdam. Regular ed.), 2013-11, Vol.38 (11), p.566-575</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</citedby><cites>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tibs.2013.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24113192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plate, Lars</creatorcontrib><creatorcontrib>Marletta, Michael A.</creatorcontrib><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><title>Trends in biochemical sciences (Amsterdam. Regular ed.)</title><addtitle>Trends Biochem Sci</addtitle><description>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis. Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</description><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>biofilm</subject><subject>cyclic-di-GMP</subject><subject>eukaryotic cells</subject><subject>guanylate cyclase</subject><subject>H-NOX</subject><subject>Heme - metabolism</subject><subject>mammals</subject><subject>metabolism</subject><subject>Models, Molecular</subject><subject>nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>oxygen</subject><subject>proteins</subject><subject>quorum sensing</subject><subject>signal transduction</subject><subject>symbiosis</subject><subject>two-component signaling</subject><issn>0968-0004</issn><issn>1362-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFq3DAQhkVpaTbbvkAPrY-92JmRZFuGUgghaQohObSB3oQsjzdabGsreZfm7aNl09BeQg5CA_rm1wwfYx8QCgSsTtbF7NpYcEBRgCoA1Cu2QFHxXApevWYLaCqVA4A8YscxrgGwrOvyLTviElFgwxfs4trNwdnM_3Ed5ZGm6KZVdplf3_zKNsHP5KaYrfyOwpS1xs4UnBky68dxO6WipTuzcz68Y296M0R6_3gv2e3F-c-zy_zq5tv3s9Or3FaIc96TSt8K4JxbMLyRpWm4MtAiNJAqbLGuVd1WypZKEimjeG1s2VLXy16RWLKvh9zNth2pszTNwQx6E9xowr32xun_XyZ3p9P4WihsUIoU8PkxIPjfW4qzHl20NAxmIr-NGksohZSoXoDKhlcg66p5ASqlaNLqKqH8gNrgYwzUPw2PoPda9Vrvteq9Vg1KJ62p6eO_az-1_PWYgE8HoDdem1VwUd_-SAlVsg-Cp7NkXw4EJT07R0FH62iy1LlAdtadd89N8ACSZrwq</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Plate, Lars</creator><creator>Marletta, Michael A.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><author>Plate, Lars ; Marletta, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>biofilm</topic><topic>cyclic-di-GMP</topic><topic>eukaryotic cells</topic><topic>guanylate cyclase</topic><topic>H-NOX</topic><topic>Heme - metabolism</topic><topic>mammals</topic><topic>metabolism</topic><topic>Models, Molecular</topic><topic>nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>oxygen</topic><topic>proteins</topic><topic>quorum sensing</topic><topic>signal transduction</topic><topic>symbiosis</topic><topic>two-component signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plate, Lars</creatorcontrib><creatorcontrib>Marletta, Michael A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plate, Lars</au><au>Marletta, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</atitle><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle><addtitle>Trends Biochem Sci</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>38</volume><issue>11</issue><spage>566</spage><epage>575</epage><pages>566-575</pages><issn>0968-0004</issn><eissn>1362-4326</eissn><abstract>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis. Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24113192</pmid><doi>10.1016/j.tibs.2013.08.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0968-0004
ispartof Trends in biochemical sciences (Amsterdam. Regular ed.), 2013-11, Vol.38 (11), p.566-575
issn 0968-0004
1362-4326
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3819143
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Bacteria
Bacteria - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
biofilm
cyclic-di-GMP
eukaryotic cells
guanylate cyclase
H-NOX
Heme - metabolism
mammals
metabolism
Models, Molecular
nitric oxide
Nitric Oxide - metabolism
oxygen
proteins
quorum sensing
signal transduction
symbiosis
two-component signaling
title Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide-sensing%20H-NOX%20proteins%20govern%20bacterial%20communal%20behavior&rft.jtitle=Trends%20in%20biochemical%20sciences%20(Amsterdam.%20Regular%20ed.)&rft.au=Plate,%20Lars&rft.date=2013-11-01&rft.volume=38&rft.issue=11&rft.spage=566&rft.epage=575&rft.pages=566-575&rft.issn=0968-0004&rft.eissn=1362-4326&rft_id=info:doi/10.1016/j.tibs.2013.08.008&rft_dat=%3Cproquest_pubme%3E1505344183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444393198&rft_id=info:pmid/24113192&rft_els_id=S0968000413001540&rfr_iscdi=true