Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior
•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how...
Gespeichert in:
Veröffentlicht in: | Trends in biochemical sciences (Amsterdam. Regular ed.) 2013-11, Vol.38 (11), p.566-575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 575 |
---|---|
container_issue | 11 |
container_start_page | 566 |
container_title | Trends in biochemical sciences (Amsterdam. Regular ed.) |
container_volume | 38 |
creator | Plate, Lars Marletta, Michael A. |
description | •We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis.
Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways. |
doi_str_mv | 10.1016/j.tibs.2013.08.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3819143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0968000413001540</els_id><sourcerecordid>1505344183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVpaTbbvkAPrY-92JmRZFuGUgghaQohObSB3oQsjzdabGsreZfm7aNl09BeQg5CA_rm1wwfYx8QCgSsTtbF7NpYcEBRgCoA1Cu2QFHxXApevWYLaCqVA4A8YscxrgGwrOvyLTviElFgwxfs4trNwdnM_3Ed5ZGm6KZVdplf3_zKNsHP5KaYrfyOwpS1xs4UnBky68dxO6WipTuzcz68Y296M0R6_3gv2e3F-c-zy_zq5tv3s9Or3FaIc96TSt8K4JxbMLyRpWm4MtAiNJAqbLGuVd1WypZKEimjeG1s2VLXy16RWLKvh9zNth2pszTNwQx6E9xowr32xun_XyZ3p9P4WihsUIoU8PkxIPjfW4qzHl20NAxmIr-NGksohZSoXoDKhlcg66p5ASqlaNLqKqH8gNrgYwzUPw2PoPda9Vrvteq9Vg1KJ62p6eO_az-1_PWYgE8HoDdem1VwUd_-SAlVsg-Cp7NkXw4EJT07R0FH62iy1LlAdtadd89N8ACSZrwq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444393198</pqid></control><display><type>article</type><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Plate, Lars ; Marletta, Michael A.</creator><creatorcontrib>Plate, Lars ; Marletta, Michael A.</creatorcontrib><description>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis.
Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</description><identifier>ISSN: 0968-0004</identifier><identifier>EISSN: 1362-4326</identifier><identifier>DOI: 10.1016/j.tibs.2013.08.008</identifier><identifier>PMID: 24113192</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacteria ; Bacteria - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; biofilm ; cyclic-di-GMP ; eukaryotic cells ; guanylate cyclase ; H-NOX ; Heme - metabolism ; mammals ; metabolism ; Models, Molecular ; nitric oxide ; Nitric Oxide - metabolism ; oxygen ; proteins ; quorum sensing ; signal transduction ; symbiosis ; two-component signaling</subject><ispartof>Trends in biochemical sciences (Amsterdam. Regular ed.), 2013-11, Vol.38 (11), p.566-575</ispartof><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>2013 Elsevier Ltd. All rights reserved. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</citedby><cites>FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tibs.2013.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24113192$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Plate, Lars</creatorcontrib><creatorcontrib>Marletta, Michael A.</creatorcontrib><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><title>Trends in biochemical sciences (Amsterdam. Regular ed.)</title><addtitle>Trends Biochem Sci</addtitle><description>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis.
Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</description><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>biofilm</subject><subject>cyclic-di-GMP</subject><subject>eukaryotic cells</subject><subject>guanylate cyclase</subject><subject>H-NOX</subject><subject>Heme - metabolism</subject><subject>mammals</subject><subject>metabolism</subject><subject>Models, Molecular</subject><subject>nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>oxygen</subject><subject>proteins</subject><subject>quorum sensing</subject><subject>signal transduction</subject><subject>symbiosis</subject><subject>two-component signaling</subject><issn>0968-0004</issn><issn>1362-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkcFq3DAQhkVpaTbbvkAPrY-92JmRZFuGUgghaQohObSB3oQsjzdabGsreZfm7aNl09BeQg5CA_rm1wwfYx8QCgSsTtbF7NpYcEBRgCoA1Cu2QFHxXApevWYLaCqVA4A8YscxrgGwrOvyLTviElFgwxfs4trNwdnM_3Ed5ZGm6KZVdplf3_zKNsHP5KaYrfyOwpS1xs4UnBky68dxO6WipTuzcz68Y296M0R6_3gv2e3F-c-zy_zq5tv3s9Or3FaIc96TSt8K4JxbMLyRpWm4MtAiNJAqbLGuVd1WypZKEimjeG1s2VLXy16RWLKvh9zNth2pszTNwQx6E9xowr32xun_XyZ3p9P4WihsUIoU8PkxIPjfW4qzHl20NAxmIr-NGksohZSoXoDKhlcg66p5ASqlaNLqKqH8gNrgYwzUPw2PoPda9Vrvteq9Vg1KJ62p6eO_az-1_PWYgE8HoDdem1VwUd_-SAlVsg-Cp7NkXw4EJT07R0FH62iy1LlAdtadd89N8ACSZrwq</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Plate, Lars</creator><creator>Marletta, Michael A.</creator><general>Elsevier Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</title><author>Plate, Lars ; Marletta, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-fe831930222c0a2945a928a0b10909281b17787b68c584ee8a827ac5bedf4f8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>biofilm</topic><topic>cyclic-di-GMP</topic><topic>eukaryotic cells</topic><topic>guanylate cyclase</topic><topic>H-NOX</topic><topic>Heme - metabolism</topic><topic>mammals</topic><topic>metabolism</topic><topic>Models, Molecular</topic><topic>nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>oxygen</topic><topic>proteins</topic><topic>quorum sensing</topic><topic>signal transduction</topic><topic>symbiosis</topic><topic>two-component signaling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plate, Lars</creatorcontrib><creatorcontrib>Marletta, Michael A.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plate, Lars</au><au>Marletta, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior</atitle><jtitle>Trends in biochemical sciences (Amsterdam. Regular ed.)</jtitle><addtitle>Trends Biochem Sci</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>38</volume><issue>11</issue><spage>566</spage><epage>575</epage><pages>566-575</pages><issn>0968-0004</issn><eissn>1362-4326</eissn><abstract>•We describe how heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for nitric oxide (NO) in bacteria.•H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism.•Structural and mechanistic studies have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into function.•H-NOX proteins share a common role in reorganizing important bacterial communal behaviors in response to nitric oxide.•H-NOX pathways control motility, biofilm formation, quorum sensing, and symbiosis.
Heme-nitric oxide/oxygen binding (H-NOX) domains function as sensors for the gaseous signaling agent nitric oxide (NO) in eukaryotes and bacteria. Mammalian NO signaling is well characterized and involves the H-NOX domain of soluble guanylate cyclase. In bacteria, H-NOX proteins interact with bacterial signaling proteins in two-component signaling systems or in cyclic-di-GMP metabolism. Characterization of several downstream signaling processes has shown that bacterial H-NOX proteins share a common role in controlling important bacterial communal behaviors in response to NO. The H-NOX pathways regulate motility, biofilm formation, quorum sensing, and symbiosis. Here, we review the latest structural and mechanistic studies that have elucidated how H-NOX domains selectively bind NO and transduce ligand binding into conformational changes that modulate activity of signaling partners. Furthermore, we summarize the recent advances in understanding the physiological function and biochemical details of the H-NOX signaling pathways.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24113192</pmid><doi>10.1016/j.tibs.2013.08.008</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0968-0004 |
ispartof | Trends in biochemical sciences (Amsterdam. Regular ed.), 2013-11, Vol.38 (11), p.566-575 |
issn | 0968-0004 1362-4326 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3819143 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Bacteria Bacteria - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism biofilm cyclic-di-GMP eukaryotic cells guanylate cyclase H-NOX Heme - metabolism mammals metabolism Models, Molecular nitric oxide Nitric Oxide - metabolism oxygen proteins quorum sensing signal transduction symbiosis two-component signaling |
title | Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T06%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitric%20oxide-sensing%20H-NOX%20proteins%20govern%20bacterial%20communal%20behavior&rft.jtitle=Trends%20in%20biochemical%20sciences%20(Amsterdam.%20Regular%20ed.)&rft.au=Plate,%20Lars&rft.date=2013-11-01&rft.volume=38&rft.issue=11&rft.spage=566&rft.epage=575&rft.pages=566-575&rft.issn=0968-0004&rft.eissn=1362-4326&rft_id=info:doi/10.1016/j.tibs.2013.08.008&rft_dat=%3Cproquest_pubme%3E1505344183%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444393198&rft_id=info:pmid/24113192&rft_els_id=S0968000413001540&rfr_iscdi=true |