Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly

Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2012-08, Vol.30 (8), p.771-776
Hauptverfasser: Lam, Ernest T, Hastie, Alex, Lin, Chin, Ehrlich, Dean, Das, Somes K, Austin, Michael D, Deshpande, Paru, Cao, Han, Nagarajan, Niranjan, Xiao, Ming, Kwok, Pui-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue 8
container_start_page 771
container_title Nature biotechnology
container_volume 30
creator Lam, Ernest T
Hastie, Alex
Lin, Chin
Ehrlich, Dean
Das, Somes K
Austin, Michael D
Deshpande, Paru
Cao, Han
Nagarajan, Niranjan
Xiao, Ming
Kwok, Pui-Yan
description Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.
doi_str_mv 10.1038/nbt.2303
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3817024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A300444653</galeid><sourcerecordid>A300444653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</originalsourceid><addsrcrecordid>eNqNk_9r1DAUwIsobk7Bv0AKIijYM2nStPlFGEPnYDDw209CSNPXXkab3PLa4f335ty59YboUWhD8nmfvCbvJclzShaUsOqdq8dFzgh7kBzSgouMCikexjGpyozQQhwkTxAvCSGCC_E4OcjzUpaFyA-TH6fg_ADpoFcr67rUu9Rp581SOwd9qkPQa0xbH1Icw2TGKeg-vdbB6tFGVjvdr9FiHDQpwtUEzkCqEWGo-_XT5FGre4Rn2-9R8u3jh68nn7Lzi9Ozk-PzzFQkHzMDVJSSFk3OdQkVzWtKDOW1bIBLaKjMJSNFrTnjtDFtWxS6KgVvTC3rBkrDjpL3N97VVA_QGHBjTFOtgh10WCuvrdpdcXapOn-tWEVLkvMoeL0VBB__AUc1WDTQ99qBn1BRIgvBWNx1D1RIKktRFBF9eQ-99FOIJ7ahWBUxRss7qtM9KOtaH1M0G6k6FpSRklYV-SfFCOGci4JFavEXKj4NDNZ4B62N8zsBb3YCIjPCz7HTE6I6-_J5N4X_sft6L77v792wc-_bGVtPaB1gfKHtliPehOyo98Dn9u3dmuARA7S3JUTJ7ytTsdHUptEi-mJecrfgn86KwKstoNHovg3aGYt3XEQ4kbOTwrjkOgjzIrm36S9xjDhn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038919317</pqid></control><display><type>article</type><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</creator><creatorcontrib>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</creatorcontrib><description>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.2303</identifier><identifier>PMID: 22797562</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1513/1382 ; 631/208/726/649/2157 ; 631/61/350 ; 631/61/514/2254 ; Agriculture ; Base Sequence ; Bioinformatics ; Biological and medical sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromosome Mapping - methods ; Chromosomes ; Chromosomes, Artificial, Bacterial ; Copy number variations ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA sequencing ; Fluorescence ; Fluorescent Dyes - chemistry ; Fundamental and applied biological sciences. Psychology ; Gene mapping ; Genomes ; Genomics ; Haplotypes ; Haplotypes - genetics ; Humans ; Life Sciences ; Major histocompatibility complex ; Major Histocompatibility Complex - genetics ; Microfluidic Analytical Techniques - instrumentation ; Molecular and cellular biology ; Molecular Sequence Data ; Nanotechnology - instrumentation ; Nucleotide Motifs ; Nucleotide sequencing ; Physiological aspects ; Scientific imaging ; Silicon</subject><ispartof>Nature biotechnology, 2012-08, Vol.30 (8), p.771-776</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><rights>2012 Nature America, Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</citedby><cites>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.2303$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.2303$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26234093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22797562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Ernest T</creatorcontrib><creatorcontrib>Hastie, Alex</creatorcontrib><creatorcontrib>Lin, Chin</creatorcontrib><creatorcontrib>Ehrlich, Dean</creatorcontrib><creatorcontrib>Das, Somes K</creatorcontrib><creatorcontrib>Austin, Michael D</creatorcontrib><creatorcontrib>Deshpande, Paru</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Nagarajan, Niranjan</creatorcontrib><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Kwok, Pui-Yan</creatorcontrib><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</description><subject>631/1647/1513/1382</subject><subject>631/208/726/649/2157</subject><subject>631/61/350</subject><subject>631/61/514/2254</subject><subject>Agriculture</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Copy number variations</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Haplotypes - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Major histocompatibility complex</subject><subject>Major Histocompatibility Complex - genetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Nanotechnology - instrumentation</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequencing</subject><subject>Physiological aspects</subject><subject>Scientific imaging</subject><subject>Silicon</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNk_9r1DAUwIsobk7Bv0AKIijYM2nStPlFGEPnYDDw209CSNPXXkab3PLa4f335ty59YboUWhD8nmfvCbvJclzShaUsOqdq8dFzgh7kBzSgouMCikexjGpyozQQhwkTxAvCSGCC_E4OcjzUpaFyA-TH6fg_ADpoFcr67rUu9Rp581SOwd9qkPQa0xbH1Icw2TGKeg-vdbB6tFGVjvdr9FiHDQpwtUEzkCqEWGo-_XT5FGre4Rn2-9R8u3jh68nn7Lzi9Ozk-PzzFQkHzMDVJSSFk3OdQkVzWtKDOW1bIBLaKjMJSNFrTnjtDFtWxS6KgVvTC3rBkrDjpL3N97VVA_QGHBjTFOtgh10WCuvrdpdcXapOn-tWEVLkvMoeL0VBB__AUc1WDTQ99qBn1BRIgvBWNx1D1RIKktRFBF9eQ-99FOIJ7ahWBUxRss7qtM9KOtaH1M0G6k6FpSRklYV-SfFCOGci4JFavEXKj4NDNZ4B62N8zsBb3YCIjPCz7HTE6I6-_J5N4X_sft6L77v792wc-_bGVtPaB1gfKHtliPehOyo98Dn9u3dmuARA7S3JUTJ7ytTsdHUptEi-mJecrfgn86KwKstoNHovg3aGYt3XEQ4kbOTwrjkOgjzIrm36S9xjDhn</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Lam, Ernest T</creator><creator>Hastie, Alex</creator><creator>Lin, Chin</creator><creator>Ehrlich, Dean</creator><creator>Das, Somes K</creator><creator>Austin, Michael D</creator><creator>Deshpande, Paru</creator><creator>Cao, Han</creator><creator>Nagarajan, Niranjan</creator><creator>Xiao, Ming</creator><creator>Kwok, Pui-Yan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><author>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/1647/1513/1382</topic><topic>631/208/726/649/2157</topic><topic>631/61/350</topic><topic>631/61/514/2254</topic><topic>Agriculture</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Copy number variations</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Haplotypes - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Major histocompatibility complex</topic><topic>Major Histocompatibility Complex - genetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Nanotechnology - instrumentation</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequencing</topic><topic>Physiological aspects</topic><topic>Scientific imaging</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Ernest T</creatorcontrib><creatorcontrib>Hastie, Alex</creatorcontrib><creatorcontrib>Lin, Chin</creatorcontrib><creatorcontrib>Ehrlich, Dean</creatorcontrib><creatorcontrib>Das, Somes K</creatorcontrib><creatorcontrib>Austin, Michael D</creatorcontrib><creatorcontrib>Deshpande, Paru</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Nagarajan, Niranjan</creatorcontrib><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Kwok, Pui-Yan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Ernest T</au><au>Hastie, Alex</au><au>Lin, Chin</au><au>Ehrlich, Dean</au><au>Das, Somes K</au><au>Austin, Michael D</au><au>Deshpande, Paru</au><au>Cao, Han</au><au>Nagarajan, Niranjan</au><au>Xiao, Ming</au><au>Kwok, Pui-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>30</volume><issue>8</issue><spage>771</spage><epage>776</epage><pages>771-776</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for de novo assembly of sequencing data. Nanochannel genome mapping should facilitate de novo assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22797562</pmid><doi>10.1038/nbt.2303</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2012-08, Vol.30 (8), p.771-776
issn 1087-0156
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3817024
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/1647/1513/1382
631/208/726/649/2157
631/61/350
631/61/514/2254
Agriculture
Base Sequence
Bioinformatics
Biological and medical sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Chromosome Mapping - methods
Chromosomes
Chromosomes, Artificial, Bacterial
Copy number variations
Deoxyribonucleic acid
Diverse techniques
DNA
DNA sequencing
Fluorescence
Fluorescent Dyes - chemistry
Fundamental and applied biological sciences. Psychology
Gene mapping
Genomes
Genomics
Haplotypes
Haplotypes - genetics
Humans
Life Sciences
Major histocompatibility complex
Major Histocompatibility Complex - genetics
Microfluidic Analytical Techniques - instrumentation
Molecular and cellular biology
Molecular Sequence Data
Nanotechnology - instrumentation
Nucleotide Motifs
Nucleotide sequencing
Physiological aspects
Scientific imaging
Silicon
title Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20mapping%20on%20nanochannel%20arrays%20for%20structural%20variation%20analysis%20and%20sequence%20assembly&rft.jtitle=Nature%20biotechnology&rft.au=Lam,%20Ernest%20T&rft.date=2012-08-01&rft.volume=30&rft.issue=8&rft.spage=771&rft.epage=776&rft.pages=771-776&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt.2303&rft_dat=%3Cgale_pubme%3EA300444653%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038919317&rft_id=info:pmid/22797562&rft_galeid=A300444653&rfr_iscdi=true