Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly
Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam et al . immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process. We describe genome mapp...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2012-08, Vol.30 (8), p.771-776 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 776 |
---|---|
container_issue | 8 |
container_start_page | 771 |
container_title | Nature biotechnology |
container_volume | 30 |
creator | Lam, Ernest T Hastie, Alex Lin, Chin Ehrlich, Dean Das, Somes K Austin, Michael D Deshpande, Paru Cao, Han Nagarajan, Niranjan Xiao, Ming Kwok, Pui-Yan |
description | Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam
et al
. immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process.
We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for
de novo
assembly of sequencing data. Nanochannel genome mapping should facilitate
de novo
assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics. |
doi_str_mv | 10.1038/nbt.2303 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3817024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A300444653</galeid><sourcerecordid>A300444653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</originalsourceid><addsrcrecordid>eNqNk_9r1DAUwIsobk7Bv0AKIijYM2nStPlFGEPnYDDw209CSNPXXkab3PLa4f335ty59YboUWhD8nmfvCbvJclzShaUsOqdq8dFzgh7kBzSgouMCikexjGpyozQQhwkTxAvCSGCC_E4OcjzUpaFyA-TH6fg_ADpoFcr67rUu9Rp581SOwd9qkPQa0xbH1Icw2TGKeg-vdbB6tFGVjvdr9FiHDQpwtUEzkCqEWGo-_XT5FGre4Rn2-9R8u3jh68nn7Lzi9Ozk-PzzFQkHzMDVJSSFk3OdQkVzWtKDOW1bIBLaKjMJSNFrTnjtDFtWxS6KgVvTC3rBkrDjpL3N97VVA_QGHBjTFOtgh10WCuvrdpdcXapOn-tWEVLkvMoeL0VBB__AUc1WDTQ99qBn1BRIgvBWNx1D1RIKktRFBF9eQ-99FOIJ7ahWBUxRss7qtM9KOtaH1M0G6k6FpSRklYV-SfFCOGci4JFavEXKj4NDNZ4B62N8zsBb3YCIjPCz7HTE6I6-_J5N4X_sft6L77v792wc-_bGVtPaB1gfKHtliPehOyo98Dn9u3dmuARA7S3JUTJ7ytTsdHUptEi-mJecrfgn86KwKstoNHovg3aGYt3XEQ4kbOTwrjkOgjzIrm36S9xjDhn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1038919317</pqid></control><display><type>article</type><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</creator><creatorcontrib>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</creatorcontrib><description>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam
et al
. immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process.
We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for
de novo
assembly of sequencing data. Nanochannel genome mapping should facilitate
de novo
assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/nbt.2303</identifier><identifier>PMID: 22797562</identifier><identifier>CODEN: NABIF9</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/1513/1382 ; 631/208/726/649/2157 ; 631/61/350 ; 631/61/514/2254 ; Agriculture ; Base Sequence ; Bioinformatics ; Biological and medical sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Chromosome Mapping - methods ; Chromosomes ; Chromosomes, Artificial, Bacterial ; Copy number variations ; Deoxyribonucleic acid ; Diverse techniques ; DNA ; DNA sequencing ; Fluorescence ; Fluorescent Dyes - chemistry ; Fundamental and applied biological sciences. Psychology ; Gene mapping ; Genomes ; Genomics ; Haplotypes ; Haplotypes - genetics ; Humans ; Life Sciences ; Major histocompatibility complex ; Major Histocompatibility Complex - genetics ; Microfluidic Analytical Techniques - instrumentation ; Molecular and cellular biology ; Molecular Sequence Data ; Nanotechnology - instrumentation ; Nucleotide Motifs ; Nucleotide sequencing ; Physiological aspects ; Scientific imaging ; Silicon</subject><ispartof>Nature biotechnology, 2012-08, Vol.30 (8), p.771-776</ispartof><rights>Springer Nature America, Inc. 2012</rights><rights>2014 INIST-CNRS</rights><rights>COPYRIGHT 2012 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2012</rights><rights>2012 Nature America, Inc. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</citedby><cites>FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nbt.2303$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nbt.2303$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26234093$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22797562$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Ernest T</creatorcontrib><creatorcontrib>Hastie, Alex</creatorcontrib><creatorcontrib>Lin, Chin</creatorcontrib><creatorcontrib>Ehrlich, Dean</creatorcontrib><creatorcontrib>Das, Somes K</creatorcontrib><creatorcontrib>Austin, Michael D</creatorcontrib><creatorcontrib>Deshpande, Paru</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Nagarajan, Niranjan</creatorcontrib><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Kwok, Pui-Yan</creatorcontrib><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam
et al
. immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process.
We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for
de novo
assembly of sequencing data. Nanochannel genome mapping should facilitate
de novo
assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</description><subject>631/1647/1513/1382</subject><subject>631/208/726/649/2157</subject><subject>631/61/350</subject><subject>631/61/514/2254</subject><subject>Agriculture</subject><subject>Base Sequence</subject><subject>Bioinformatics</subject><subject>Biological and medical sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosomes</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Copy number variations</subject><subject>Deoxyribonucleic acid</subject><subject>Diverse techniques</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Fluorescence</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene mapping</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Haplotypes - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Major histocompatibility complex</subject><subject>Major Histocompatibility Complex - genetics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Nanotechnology - instrumentation</subject><subject>Nucleotide Motifs</subject><subject>Nucleotide sequencing</subject><subject>Physiological aspects</subject><subject>Scientific imaging</subject><subject>Silicon</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>N95</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNk_9r1DAUwIsobk7Bv0AKIijYM2nStPlFGEPnYDDw209CSNPXXkab3PLa4f335ty59YboUWhD8nmfvCbvJclzShaUsOqdq8dFzgh7kBzSgouMCikexjGpyozQQhwkTxAvCSGCC_E4OcjzUpaFyA-TH6fg_ADpoFcr67rUu9Rp581SOwd9qkPQa0xbH1Icw2TGKeg-vdbB6tFGVjvdr9FiHDQpwtUEzkCqEWGo-_XT5FGre4Rn2-9R8u3jh68nn7Lzi9Ozk-PzzFQkHzMDVJSSFk3OdQkVzWtKDOW1bIBLaKjMJSNFrTnjtDFtWxS6KgVvTC3rBkrDjpL3N97VVA_QGHBjTFOtgh10WCuvrdpdcXapOn-tWEVLkvMoeL0VBB__AUc1WDTQ99qBn1BRIgvBWNx1D1RIKktRFBF9eQ-99FOIJ7ahWBUxRss7qtM9KOtaH1M0G6k6FpSRklYV-SfFCOGci4JFavEXKj4NDNZ4B62N8zsBb3YCIjPCz7HTE6I6-_J5N4X_sft6L77v792wc-_bGVtPaB1gfKHtliPehOyo98Dn9u3dmuARA7S3JUTJ7ytTsdHUptEi-mJecrfgn86KwKstoNHovg3aGYt3XEQ4kbOTwrjkOgjzIrm36S9xjDhn</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Lam, Ernest T</creator><creator>Hastie, Alex</creator><creator>Lin, Chin</creator><creator>Ehrlich, Dean</creator><creator>Das, Somes K</creator><creator>Austin, Michael D</creator><creator>Deshpande, Paru</creator><creator>Cao, Han</creator><creator>Nagarajan, Niranjan</creator><creator>Xiao, Ming</creator><creator>Kwok, Pui-Yan</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QH</scope><scope>7UA</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</title><author>Lam, Ernest T ; Hastie, Alex ; Lin, Chin ; Ehrlich, Dean ; Das, Somes K ; Austin, Michael D ; Deshpande, Paru ; Cao, Han ; Nagarajan, Niranjan ; Xiao, Ming ; Kwok, Pui-Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c802t-ce167915d24a7e812b10c14b9de49ed1929305ba4341dcff55a8764dcb9bde7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>631/1647/1513/1382</topic><topic>631/208/726/649/2157</topic><topic>631/61/350</topic><topic>631/61/514/2254</topic><topic>Agriculture</topic><topic>Base Sequence</topic><topic>Bioinformatics</topic><topic>Biological and medical sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosomes</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Copy number variations</topic><topic>Deoxyribonucleic acid</topic><topic>Diverse techniques</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Fluorescence</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene mapping</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Haplotypes - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Major histocompatibility complex</topic><topic>Major Histocompatibility Complex - genetics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Nanotechnology - instrumentation</topic><topic>Nucleotide Motifs</topic><topic>Nucleotide sequencing</topic><topic>Physiological aspects</topic><topic>Scientific imaging</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Ernest T</creatorcontrib><creatorcontrib>Hastie, Alex</creatorcontrib><creatorcontrib>Lin, Chin</creatorcontrib><creatorcontrib>Ehrlich, Dean</creatorcontrib><creatorcontrib>Das, Somes K</creatorcontrib><creatorcontrib>Austin, Michael D</creatorcontrib><creatorcontrib>Deshpande, Paru</creatorcontrib><creatorcontrib>Cao, Han</creatorcontrib><creatorcontrib>Nagarajan, Niranjan</creatorcontrib><creatorcontrib>Xiao, Ming</creatorcontrib><creatorcontrib>Kwok, Pui-Yan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Ernest T</au><au>Hastie, Alex</au><au>Lin, Chin</au><au>Ehrlich, Dean</au><au>Das, Somes K</au><au>Austin, Michael D</au><au>Deshpande, Paru</au><au>Cao, Han</au><au>Nagarajan, Niranjan</au><au>Xiao, Ming</au><au>Kwok, Pui-Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>30</volume><issue>8</issue><spage>771</spage><epage>776</epage><pages>771-776</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><coden>NABIF9</coden><abstract>Optical maps of a genome, which are generated by imaging labeled single molecules of DNA, facilitate structural variation analysis and sequence assembly. Lam
et al
. immobilize DNA molecules in nanoscale channels, increasing the accuracy and throughput of the mapping process.
We describe genome mapping on nanochannel arrays. In this approach, specific sequence motifs in single DNA molecules are fluorescently labeled, and the DNA molecules are uniformly stretched in thousands of silicon channels on a nanofluidic device. Fluorescence imaging allows the construction of maps of the physical distances between occurrences of the sequence motifs. We demonstrate the analysis, individually and as mixtures, of 95 bacterial artificial chromosome (BAC) clones that cover the 4.7-Mb human major histocompatibility complex region. We obtain accurate, haplotype-resolved, sequence motif maps hundreds of kilobases in length, resulting in a median coverage of 114× for the BACs. The final sequence motif map assembly contains three contigs. With an average distance of 9 kb between labels, we detect 22 haplotype differences. We also use the sequence motif maps to provide scaffolds for
de novo
assembly of sequencing data. Nanochannel genome mapping should facilitate
de novo
assembly of sequencing reads from complex regions in diploid organisms, haplotype and structural variation analysis and comparative genomics.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>22797562</pmid><doi>10.1038/nbt.2303</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2012-08, Vol.30 (8), p.771-776 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3817024 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/1647/1513/1382 631/208/726/649/2157 631/61/350 631/61/514/2254 Agriculture Base Sequence Bioinformatics Biological and medical sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Chromosome Mapping - methods Chromosomes Chromosomes, Artificial, Bacterial Copy number variations Deoxyribonucleic acid Diverse techniques DNA DNA sequencing Fluorescence Fluorescent Dyes - chemistry Fundamental and applied biological sciences. Psychology Gene mapping Genomes Genomics Haplotypes Haplotypes - genetics Humans Life Sciences Major histocompatibility complex Major Histocompatibility Complex - genetics Microfluidic Analytical Techniques - instrumentation Molecular and cellular biology Molecular Sequence Data Nanotechnology - instrumentation Nucleotide Motifs Nucleotide sequencing Physiological aspects Scientific imaging Silicon |
title | Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20mapping%20on%20nanochannel%20arrays%20for%20structural%20variation%20analysis%20and%20sequence%20assembly&rft.jtitle=Nature%20biotechnology&rft.au=Lam,%20Ernest%20T&rft.date=2012-08-01&rft.volume=30&rft.issue=8&rft.spage=771&rft.epage=776&rft.pages=771-776&rft.issn=1087-0156&rft.eissn=1546-1696&rft.coden=NABIF9&rft_id=info:doi/10.1038/nbt.2303&rft_dat=%3Cgale_pubme%3EA300444653%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1038919317&rft_id=info:pmid/22797562&rft_galeid=A300444653&rfr_iscdi=true |