Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells

Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-10, Vol.93 (21), p.11985-11990
Hauptverfasser: Rapp, M., Yarom, Y., Segev, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11990
container_issue 21
container_start_page 11985
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Rapp, M.
Yarom, Y.
Segev, I.
description Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density ($\overline{g}_{\text{Na}}$ = $\approx $4 mS/cm$^{2}$) of rapidly inactivating voltage-dependent Na$^{+}$ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na$^{+}$ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If $\overline{g}_{\text{Na}}$ in the axon hillock and initial segment is the same as in the soma {as recently suggested by Colbert and Johnston [Colbert, C. M. & Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]}, then $\overline{g}_{\text{Na}}$ in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.
doi_str_mv 10.1073/pnas.93.21.11985
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40548</jstor_id><sourcerecordid>40548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-31528d1850b7af2bc974e03ad0459747aa656a5e5bb2bb2f1eb65c8a87517eeb3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS1EVULhjpAQKw6IywZ_rm2plxJKi1QgBxBHy-v1BqfOOthe1Pz3OE0aFQ4gWfLI7_dGM34APENwiiAnb9eDTlNJphhNEZKCPQATBCWqGyrhQzCBEPNaUEwfgccpLSGEkgl4DI6F4A2mcgIWn0JnvRsW1Tttrqt5DGu90Hn7cGayC0M1D9kO2WlfuaH6bvW131TnN8Zl3XpbvbdDF122qQp99dkGE2J2psDzTdQr15VqZr1PT8BRr32yT_f3Cfj24fzr7LK--nLxcXZ2VRsmZK4JYlh0SDDYct3j1khOLSS6g5SVkmvdsEYzy9oWl9Mj2zbMCC04Q9zalpyA013f9diubGfK6FF7tY5upeNGBe3Un8rgfqhF-KWIQBwW--u9PYafo01ZrVwyZQE92DAmxQVlDZTyvyBigmDJaAFf_QUuwxiH8gcKQ0SQELfd4A4yMaQUbX8YGEG1DVptg1aSKIzUbdDF8uL-ogfDPtmiv9nrW-edeq-D6kfvs73JBX35b7QQz3fEMuUQDwiFjAryG2hRx0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201318899</pqid></control><display><type>article</type><title>Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rapp, M. ; Yarom, Y. ; Segev, I.</creator><creatorcontrib>Rapp, M. ; Yarom, Y. ; Segev, I.</creatorcontrib><description>Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density ($\overline{g}_{\text{Na}}$ = $\approx $4 mS/cm$^{2}$) of rapidly inactivating voltage-dependent Na$^{+}$ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na$^{+}$ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If $\overline{g}_{\text{Na}}$ in the axon hillock and initial segment is the same as in the soma {as recently suggested by Colbert and Johnston [Colbert, C. M. &amp; Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]}, then $\overline{g}_{\text{Na}}$ in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.21.11985</identifier><identifier>PMID: 8876249</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology ; Animals ; Axons ; Axons - physiology ; Biology ; Cell Communication ; Cerebral Cortex - physiology ; Dendrites ; Dendrites - physiology ; Electric potential ; Evoked Potentials - drug effects ; Experimental results ; Kinetics ; Models, Neurological ; Neurology ; Neurons ; Neuroscience ; Pyramidal cells ; Pyramidal Cells - physiology ; Rats ; Receptors, AMPA - physiology ; Receptors, GABA-A - physiology ; Receptors, GABA-B - physiology ; Receptors, N-Methyl-D-Aspartate - physiology ; Sodium Channels - physiology ; Somatosensory Cortex - physiology ; Synapses ; Synapses - physiology ; Transcriptional regulatory elements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-10, Vol.93 (21), p.11985-11990</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Oct 15, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-31528d1850b7af2bc974e03ad0459747aa656a5e5bb2bb2f1eb65c8a87517eeb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40548$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40548$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8876249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rapp, M.</creatorcontrib><creatorcontrib>Yarom, Y.</creatorcontrib><creatorcontrib>Segev, I.</creatorcontrib><title>Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density ($\overline{g}_{\text{Na}}$ = $\approx $4 mS/cm$^{2}$) of rapidly inactivating voltage-dependent Na$^{+}$ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na$^{+}$ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If $\overline{g}_{\text{Na}}$ in the axon hillock and initial segment is the same as in the soma {as recently suggested by Colbert and Johnston [Colbert, C. M. &amp; Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]}, then $\overline{g}_{\text{Na}}$ in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.</description><subject>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Biology</subject><subject>Cell Communication</subject><subject>Cerebral Cortex - physiology</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Electric potential</subject><subject>Evoked Potentials - drug effects</subject><subject>Experimental results</subject><subject>Kinetics</subject><subject>Models, Neurological</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neuroscience</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Receptors, AMPA - physiology</subject><subject>Receptors, GABA-A - physiology</subject><subject>Receptors, GABA-B - physiology</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Sodium Channels - physiology</subject><subject>Somatosensory Cortex - physiology</subject><subject>Synapses</subject><subject>Synapses - physiology</subject><subject>Transcriptional regulatory elements</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS1EVULhjpAQKw6IywZ_rm2plxJKi1QgBxBHy-v1BqfOOthe1Pz3OE0aFQ4gWfLI7_dGM34APENwiiAnb9eDTlNJphhNEZKCPQATBCWqGyrhQzCBEPNaUEwfgccpLSGEkgl4DI6F4A2mcgIWn0JnvRsW1Tttrqt5DGu90Hn7cGayC0M1D9kO2WlfuaH6bvW131TnN8Zl3XpbvbdDF122qQp99dkGE2J2psDzTdQr15VqZr1PT8BRr32yT_f3Cfj24fzr7LK--nLxcXZ2VRsmZK4JYlh0SDDYct3j1khOLSS6g5SVkmvdsEYzy9oWl9Mj2zbMCC04Q9zalpyA013f9diubGfK6FF7tY5upeNGBe3Un8rgfqhF-KWIQBwW--u9PYafo01ZrVwyZQE92DAmxQVlDZTyvyBigmDJaAFf_QUuwxiH8gcKQ0SQELfd4A4yMaQUbX8YGEG1DVptg1aSKIzUbdDF8uL-ogfDPtmiv9nrW-edeq-D6kfvs73JBX35b7QQz3fEMuUQDwiFjAryG2hRx0Y</recordid><startdate>19961015</startdate><enddate>19961015</enddate><creator>Rapp, M.</creator><creator>Yarom, Y.</creator><creator>Segev, I.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19961015</creationdate><title>Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells</title><author>Rapp, M. ; Yarom, Y. ; Segev, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-31528d1850b7af2bc974e03ad0459747aa656a5e5bb2bb2f1eb65c8a87517eeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Biology</topic><topic>Cell Communication</topic><topic>Cerebral Cortex - physiology</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Electric potential</topic><topic>Evoked Potentials - drug effects</topic><topic>Experimental results</topic><topic>Kinetics</topic><topic>Models, Neurological</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neuroscience</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Receptors, AMPA - physiology</topic><topic>Receptors, GABA-A - physiology</topic><topic>Receptors, GABA-B - physiology</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Sodium Channels - physiology</topic><topic>Somatosensory Cortex - physiology</topic><topic>Synapses</topic><topic>Synapses - physiology</topic><topic>Transcriptional regulatory elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rapp, M.</creatorcontrib><creatorcontrib>Yarom, Y.</creatorcontrib><creatorcontrib>Segev, I.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rapp, M.</au><au>Yarom, Y.</au><au>Segev, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-10-15</date><risdate>1996</risdate><volume>93</volume><issue>21</issue><spage>11985</spage><epage>11990</epage><pages>11985-11990</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Simultaneous recordings from the soma and apical dendrite of layer V neocortical pyramidal cells of young rats show that, for any location of current input, an evoked action potential (AP) always starts at the axon and then propagates actively, but decrementally, backward into the dendrites. This back-propagating AP is supported by a low density ($\overline{g}_{\text{Na}}$ = $\approx $4 mS/cm$^{2}$) of rapidly inactivating voltage-dependent Na$^{+}$ channels in the soma and the apical dendrite. Investigation of detailed, biophysically constrained, models of reconstructed pyramidal cells shows the following. (i) The initiation of the AP first in the axon cannot be explained solely by morphological considerations; the axon must be more excitable than the soma and dendrites. (ii) The minimal Na$^{+}$ channel density in the axon that fully accounts for the experimental results is about 20-times that of the soma. If $\overline{g}_{\text{Na}}$ in the axon hillock and initial segment is the same as in the soma {as recently suggested by Colbert and Johnston [Colbert, C. M. &amp; Johnston, D. (1995) Soc. Neurosci. Abstr. 21, 684.2]}, then $\overline{g}_{\text{Na}}$ in the more distal axonal regions is required to be about 40-times that of the soma. (iii) A backward propagating AP in weakly excitable dendrites can be modulated in a graded manner by background synaptic activity. The functional role of weakly excitable dendrites and a more excitable axon for forward synaptic integration and for backward, global, communication between the axon and the dendrites is discussed.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8876249</pmid><doi>10.1073/pnas.93.21.11985</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-10, Vol.93 (21), p.11985-11990
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_38170
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid - pharmacology
Animals
Axons
Axons - physiology
Biology
Cell Communication
Cerebral Cortex - physiology
Dendrites
Dendrites - physiology
Electric potential
Evoked Potentials - drug effects
Experimental results
Kinetics
Models, Neurological
Neurology
Neurons
Neuroscience
Pyramidal cells
Pyramidal Cells - physiology
Rats
Receptors, AMPA - physiology
Receptors, GABA-A - physiology
Receptors, GABA-B - physiology
Receptors, N-Methyl-D-Aspartate - physiology
Sodium Channels - physiology
Somatosensory Cortex - physiology
Synapses
Synapses - physiology
Transcriptional regulatory elements
title Modeling Back Propagating Action Potential in Weakly Excitable Dendrites of Neocortical Pyramidal Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A39%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Back%20Propagating%20Action%20Potential%20in%20Weakly%20Excitable%20Dendrites%20of%20Neocortical%20Pyramidal%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rapp,%20M.&rft.date=1996-10-15&rft.volume=93&rft.issue=21&rft.spage=11985&rft.epage=11990&rft.pages=11985-11990&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.21.11985&rft_dat=%3Cjstor_pubme%3E40548%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201318899&rft_id=info:pmid/8876249&rft_jstor_id=40548&rfr_iscdi=true