Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this
Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industri...
Gespeichert in:
Veröffentlicht in: | Microbial biotechnology 2009-03, Vol.2 (2), p.164-177 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 164 |
container_title | Microbial biotechnology |
container_volume | 2 |
creator | Ruiz-Dueñas, Francisco J. Martínez, Ángel T. |
description | Summary
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts. |
doi_str_mv | 10.1111/j.1751-7915.2008.00078.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3815837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299168903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</originalsourceid><addsrcrecordid>eNqNkd9u0zAUxiMEYmPwCsgS1wn-0yQOQkhssMHUjQuKuLROHLt16zqd46zNI-ytcdpRjTt84yOf7_udI39JggjOSDzvlxkpc5KWFckzijHPMMYlz3bPktNj4_mT-iR51XVLjAuMc_oyOaGEFqQi5DR5uDHSt7UBixo199BAMK1DrUbWzJ1xH9Ci3SJAdW9XA_JKgpUmeHABbVo7rJVHpkNKayONcsHuNYO0qkHGIQeh9wqBa_aYrUISHAqwim_NfYTAXI2zwsJ0r5MXGmyn3jzeZ8mvy6-zi2_p9MfV94vP01TmFeNpwwlURZUTDhoXFaegsJpA3WhCodRAuVKSlZLpidZaFrRhGniN6QSXE4olO0s-Hbibvl6rRsatPVix8WYNfhAtGPFvx5mFmLf3gnGSc1ZGwLtHgG_vetUFsWx77-LOgtKqIgWvMIsqflDF7-06r_RxAsFiDFEsxZiPGPMRY4hiH6LYRevbpxsejX9Ti4KPB8HWWDX8N1jcnM9iEe3pwW66oHZHO_iVKEpW5uL37ZWY_qTnt7Mv1-Ka_QEJdr2W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299168903</pqid></control><display><type>article</type><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><source>Wiley Online Library Open Access</source><creator>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</creator><creatorcontrib>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</creatorcontrib><description>Summary
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><identifier>DOI: 10.1111/j.1751-7915.2008.00078.x</identifier><identifier>PMID: 21261911</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alcohol ; Architecture ; Aromatic compounds ; Biocatalysis ; Biocatalysts ; Biodegradation ; Biodegradation, Environmental ; Carbohydrates ; Carbon ; Cell walls ; Cellulose ; Chemical attack ; Degradation ; Ecosystems ; Electron transfer ; Enzymes ; Flowers & plants ; Free radicals ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi - chemistry ; Fungi - enzymology ; Fungi - genetics ; Fungi - metabolism ; Haem ; Lignin ; Lignin - chemistry ; Lignin - metabolism ; Microbial degradation ; Microorganisms ; Organic chemistry ; Oxidation ; Peroxide ; Phenolic compounds ; Phenols ; Plant biomass ; Plant protection ; Plants ; Polymerization ; Polymers ; Proteins ; Recycling ; Redox potential ; Review ; Structure-function relationships ; Substructures</subject><ispartof>Microbial biotechnology, 2009-03, Vol.2 (2), p.164-177</ispartof><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.</rights><rights>Copyright John Wiley & Sons, Inc. Mar 2009</rights><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</citedby><cites>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815837/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815837/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-7915.2008.00078.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21261911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Dueñas, Francisco J.</creatorcontrib><creatorcontrib>Martínez, Ángel T.</creatorcontrib><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><title>Microbial biotechnology</title><addtitle>Microbial Biotechnology</addtitle><description>Summary
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</description><subject>Alcohol</subject><subject>Architecture</subject><subject>Aromatic compounds</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Chemical attack</subject><subject>Degradation</subject><subject>Ecosystems</subject><subject>Electron transfer</subject><subject>Enzymes</subject><subject>Flowers & plants</subject><subject>Free radicals</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi - chemistry</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Haem</subject><subject>Lignin</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>Microbial degradation</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Peroxide</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant biomass</subject><subject>Plant protection</subject><subject>Plants</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Recycling</subject><subject>Redox potential</subject><subject>Review</subject><subject>Structure-function relationships</subject><subject>Substructures</subject><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd9u0zAUxiMEYmPwCsgS1wn-0yQOQkhssMHUjQuKuLROHLt16zqd46zNI-ytcdpRjTt84yOf7_udI39JggjOSDzvlxkpc5KWFckzijHPMMYlz3bPktNj4_mT-iR51XVLjAuMc_oyOaGEFqQi5DR5uDHSt7UBixo199BAMK1DrUbWzJ1xH9Ci3SJAdW9XA_JKgpUmeHABbVo7rJVHpkNKayONcsHuNYO0qkHGIQeh9wqBa_aYrUISHAqwim_NfYTAXI2zwsJ0r5MXGmyn3jzeZ8mvy6-zi2_p9MfV94vP01TmFeNpwwlURZUTDhoXFaegsJpA3WhCodRAuVKSlZLpidZaFrRhGniN6QSXE4olO0s-Hbibvl6rRsatPVix8WYNfhAtGPFvx5mFmLf3gnGSc1ZGwLtHgG_vetUFsWx77-LOgtKqIgWvMIsqflDF7-06r_RxAsFiDFEsxZiPGPMRY4hiH6LYRevbpxsejX9Ti4KPB8HWWDX8N1jcnM9iEe3pwW66oHZHO_iVKEpW5uL37ZWY_qTnt7Mv1-Ka_QEJdr2W</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Ruiz-Dueñas, Francisco J.</creator><creator>Martínez, Ángel T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>200903</creationdate><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><author>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alcohol</topic><topic>Architecture</topic><topic>Aromatic compounds</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Chemical attack</topic><topic>Degradation</topic><topic>Ecosystems</topic><topic>Electron transfer</topic><topic>Enzymes</topic><topic>Flowers & plants</topic><topic>Free radicals</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi - chemistry</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Haem</topic><topic>Lignin</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>Microbial degradation</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Peroxide</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant biomass</topic><topic>Plant protection</topic><topic>Plants</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Recycling</topic><topic>Redox potential</topic><topic>Review</topic><topic>Structure-function relationships</topic><topic>Substructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Dueñas, Francisco J.</creatorcontrib><creatorcontrib>Martínez, Ángel T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Dueñas, Francisco J.</au><au>Martínez, Ángel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</atitle><jtitle>Microbial biotechnology</jtitle><addtitle>Microbial Biotechnology</addtitle><date>2009-03</date><risdate>2009</risdate><volume>2</volume><issue>2</issue><spage>164</spage><epage>177</epage><pages>164-177</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>Summary
Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21261911</pmid><doi>10.1111/j.1751-7915.2008.00078.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1751-7915 |
ispartof | Microbial biotechnology, 2009-03, Vol.2 (2), p.164-177 |
issn | 1751-7915 1751-7915 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3815837 |
source | Wiley Online Library Open Access |
subjects | Alcohol Architecture Aromatic compounds Biocatalysis Biocatalysts Biodegradation Biodegradation, Environmental Carbohydrates Carbon Cell walls Cellulose Chemical attack Degradation Ecosystems Electron transfer Enzymes Flowers & plants Free radicals Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Fungi - chemistry Fungi - enzymology Fungi - genetics Fungi - metabolism Haem Lignin Lignin - chemistry Lignin - metabolism Microbial degradation Microorganisms Organic chemistry Oxidation Peroxide Phenolic compounds Phenols Plant biomass Plant protection Plants Polymerization Polymers Proteins Recycling Redox potential Review Structure-function relationships Substructures |
title | Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20degradation%20of%20lignin:%20how%20a%20bulky%20recalcitrant%20polymer%20is%20efficiently%20recycled%20in%20nature%20and%20how%20we%20can%20take%20advantage%20of%20this&rft.jtitle=Microbial%20biotechnology&rft.au=Ruiz-Due%C3%B1as,%20Francisco%20J.&rft.date=2009-03&rft.volume=2&rft.issue=2&rft.spage=164&rft.epage=177&rft.pages=164-177&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/10.1111/j.1751-7915.2008.00078.x&rft_dat=%3Cproquest_24P%3E2299168903%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299168903&rft_id=info:pmid/21261911&rfr_iscdi=true |