Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this

Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microbial biotechnology 2009-03, Vol.2 (2), p.164-177
Hauptverfasser: Ruiz-Dueñas, Francisco J., Martínez, Ángel T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 164
container_title Microbial biotechnology
container_volume 2
creator Ruiz-Dueñas, Francisco J.
Martínez, Ángel T.
description Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.
doi_str_mv 10.1111/j.1751-7915.2008.00078.x
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3815837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2299168903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</originalsourceid><addsrcrecordid>eNqNkd9u0zAUxiMEYmPwCsgS1wn-0yQOQkhssMHUjQuKuLROHLt16zqd46zNI-ytcdpRjTt84yOf7_udI39JggjOSDzvlxkpc5KWFckzijHPMMYlz3bPktNj4_mT-iR51XVLjAuMc_oyOaGEFqQi5DR5uDHSt7UBixo199BAMK1DrUbWzJ1xH9Ci3SJAdW9XA_JKgpUmeHABbVo7rJVHpkNKayONcsHuNYO0qkHGIQeh9wqBa_aYrUISHAqwim_NfYTAXI2zwsJ0r5MXGmyn3jzeZ8mvy6-zi2_p9MfV94vP01TmFeNpwwlURZUTDhoXFaegsJpA3WhCodRAuVKSlZLpidZaFrRhGniN6QSXE4olO0s-Hbibvl6rRsatPVix8WYNfhAtGPFvx5mFmLf3gnGSc1ZGwLtHgG_vetUFsWx77-LOgtKqIgWvMIsqflDF7-06r_RxAsFiDFEsxZiPGPMRY4hiH6LYRevbpxsejX9Ti4KPB8HWWDX8N1jcnM9iEe3pwW66oHZHO_iVKEpW5uL37ZWY_qTnt7Mv1-Ka_QEJdr2W</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2299168903</pqid></control><display><type>article</type><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><source>Wiley Online Library Open Access</source><creator>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</creator><creatorcontrib>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</creatorcontrib><description>Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><identifier>DOI: 10.1111/j.1751-7915.2008.00078.x</identifier><identifier>PMID: 21261911</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alcohol ; Architecture ; Aromatic compounds ; Biocatalysis ; Biocatalysts ; Biodegradation ; Biodegradation, Environmental ; Carbohydrates ; Carbon ; Cell walls ; Cellulose ; Chemical attack ; Degradation ; Ecosystems ; Electron transfer ; Enzymes ; Flowers &amp; plants ; Free radicals ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi - chemistry ; Fungi - enzymology ; Fungi - genetics ; Fungi - metabolism ; Haem ; Lignin ; Lignin - chemistry ; Lignin - metabolism ; Microbial degradation ; Microorganisms ; Organic chemistry ; Oxidation ; Peroxide ; Phenolic compounds ; Phenols ; Plant biomass ; Plant protection ; Plants ; Polymerization ; Polymers ; Proteins ; Recycling ; Redox potential ; Review ; Structure-function relationships ; Substructures</subject><ispartof>Microbial biotechnology, 2009-03, Vol.2 (2), p.164-177</ispartof><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd</rights><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.</rights><rights>Copyright John Wiley &amp; Sons, Inc. Mar 2009</rights><rights>2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</citedby><cites>FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815837/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815837/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,11542,27903,27904,45553,45554,46030,46454,53769,53771</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-7915.2008.00078.x$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21261911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruiz-Dueñas, Francisco J.</creatorcontrib><creatorcontrib>Martínez, Ángel T.</creatorcontrib><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><title>Microbial biotechnology</title><addtitle>Microbial Biotechnology</addtitle><description>Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</description><subject>Alcohol</subject><subject>Architecture</subject><subject>Aromatic compounds</subject><subject>Biocatalysis</subject><subject>Biocatalysts</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Cell walls</subject><subject>Cellulose</subject><subject>Chemical attack</subject><subject>Degradation</subject><subject>Ecosystems</subject><subject>Electron transfer</subject><subject>Enzymes</subject><subject>Flowers &amp; plants</subject><subject>Free radicals</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi - chemistry</subject><subject>Fungi - enzymology</subject><subject>Fungi - genetics</subject><subject>Fungi - metabolism</subject><subject>Haem</subject><subject>Lignin</subject><subject>Lignin - chemistry</subject><subject>Lignin - metabolism</subject><subject>Microbial degradation</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Peroxide</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Plant biomass</subject><subject>Plant protection</subject><subject>Plants</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Proteins</subject><subject>Recycling</subject><subject>Redox potential</subject><subject>Review</subject><subject>Structure-function relationships</subject><subject>Substructures</subject><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkd9u0zAUxiMEYmPwCsgS1wn-0yQOQkhssMHUjQuKuLROHLt16zqd46zNI-ytcdpRjTt84yOf7_udI39JggjOSDzvlxkpc5KWFckzijHPMMYlz3bPktNj4_mT-iR51XVLjAuMc_oyOaGEFqQi5DR5uDHSt7UBixo199BAMK1DrUbWzJ1xH9Ci3SJAdW9XA_JKgpUmeHABbVo7rJVHpkNKayONcsHuNYO0qkHGIQeh9wqBa_aYrUISHAqwim_NfYTAXI2zwsJ0r5MXGmyn3jzeZ8mvy6-zi2_p9MfV94vP01TmFeNpwwlURZUTDhoXFaegsJpA3WhCodRAuVKSlZLpidZaFrRhGniN6QSXE4olO0s-Hbibvl6rRsatPVix8WYNfhAtGPFvx5mFmLf3gnGSc1ZGwLtHgG_vetUFsWx77-LOgtKqIgWvMIsqflDF7-06r_RxAsFiDFEsxZiPGPMRY4hiH6LYRevbpxsejX9Ti4KPB8HWWDX8N1jcnM9iEe3pwW66oHZHO_iVKEpW5uL37ZWY_qTnt7Mv1-Ka_QEJdr2W</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Ruiz-Dueñas, Francisco J.</creator><creator>Martínez, Ángel T.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>200903</creationdate><title>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</title><author>Ruiz-Dueñas, Francisco J. ; Martínez, Ángel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5938-d81a969518af06982ae0e4abdf12a7fa28eec37c3f4fffc62d3fa8b02407420c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alcohol</topic><topic>Architecture</topic><topic>Aromatic compounds</topic><topic>Biocatalysis</topic><topic>Biocatalysts</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Cell walls</topic><topic>Cellulose</topic><topic>Chemical attack</topic><topic>Degradation</topic><topic>Ecosystems</topic><topic>Electron transfer</topic><topic>Enzymes</topic><topic>Flowers &amp; plants</topic><topic>Free radicals</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi - chemistry</topic><topic>Fungi - enzymology</topic><topic>Fungi - genetics</topic><topic>Fungi - metabolism</topic><topic>Haem</topic><topic>Lignin</topic><topic>Lignin - chemistry</topic><topic>Lignin - metabolism</topic><topic>Microbial degradation</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Peroxide</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Plant biomass</topic><topic>Plant protection</topic><topic>Plants</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Proteins</topic><topic>Recycling</topic><topic>Redox potential</topic><topic>Review</topic><topic>Structure-function relationships</topic><topic>Substructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruiz-Dueñas, Francisco J.</creatorcontrib><creatorcontrib>Martínez, Ángel T.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Microbial biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruiz-Dueñas, Francisco J.</au><au>Martínez, Ángel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this</atitle><jtitle>Microbial biotechnology</jtitle><addtitle>Microbial Biotechnology</addtitle><date>2009-03</date><risdate>2009</risdate><volume>2</volume><issue>2</issue><spage>164</spage><epage>177</epage><pages>164-177</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>Summary Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biological degradation due to its molecular architecture, where different non‐phenolic phenylpropanoid units form a complex three‐dimensional network linked by a variety of ether and carbon–carbon bonds. Ligninolytic microbes have developed a unique strategy to handle lignin degradation based on unspecific one‐electron oxidation of the benzenic rings in the different lignin substructures by extracellular haemperoxidases acting synergistically with peroxide‐generating oxidases. These peroxidases posses two outstanding characteristics: (i) they have unusually high redox potential due to haem pocket architecture that enables oxidation of non‐phenolic aromatic rings, and (ii) they are able to generate a protein oxidizer by electron transfer to the haem cofactor forming a catalytic tryptophanyl‐free radical at the protein surface, where it can interact with the bulky lignin polymer. The structure–function information currently available is being used to build tailor‐made peroxidases and other oxidoreductases as industrial biocatalysts.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>21261911</pmid><doi>10.1111/j.1751-7915.2008.00078.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-7915
ispartof Microbial biotechnology, 2009-03, Vol.2 (2), p.164-177
issn 1751-7915
1751-7915
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3815837
source Wiley Online Library Open Access
subjects Alcohol
Architecture
Aromatic compounds
Biocatalysis
Biocatalysts
Biodegradation
Biodegradation, Environmental
Carbohydrates
Carbon
Cell walls
Cellulose
Chemical attack
Degradation
Ecosystems
Electron transfer
Enzymes
Flowers & plants
Free radicals
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - metabolism
Fungi - chemistry
Fungi - enzymology
Fungi - genetics
Fungi - metabolism
Haem
Lignin
Lignin - chemistry
Lignin - metabolism
Microbial degradation
Microorganisms
Organic chemistry
Oxidation
Peroxide
Phenolic compounds
Phenols
Plant biomass
Plant protection
Plants
Polymerization
Polymers
Proteins
Recycling
Redox potential
Review
Structure-function relationships
Substructures
title Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20degradation%20of%20lignin:%20how%20a%20bulky%20recalcitrant%20polymer%20is%20efficiently%20recycled%20in%20nature%20and%20how%20we%20can%20take%20advantage%20of%20this&rft.jtitle=Microbial%20biotechnology&rft.au=Ruiz-Due%C3%B1as,%20Francisco%20J.&rft.date=2009-03&rft.volume=2&rft.issue=2&rft.spage=164&rft.epage=177&rft.pages=164-177&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/10.1111/j.1751-7915.2008.00078.x&rft_dat=%3Cproquest_24P%3E2299168903%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2299168903&rft_id=info:pmid/21261911&rfr_iscdi=true