Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution

Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2013-11, Vol.41 (20), p.9396-9410
Hauptverfasser: El Omari, Kamel, Meier, Christoph, Kainov, Denis, Sutton, Geoff, Grimes, Jonathan M, Poranen, Minna M, Bamford, Dennis H, Tuma, Roman, Stuart, David I, Mancini, Erika J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9410
container_issue 20
container_start_page 9396
container_title Nucleic acids research
container_volume 41
creator El Omari, Kamel
Meier, Christoph
Kainov, Denis
Sutton, Geoff
Grimes, Jonathan M
Poranen, Minna M
Bamford, Dennis H
Tuma, Roman
Stuart, David I
Mancini, Erika J
description Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.
doi_str_mv 10.1093/nar/gkt713
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1449278009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</originalsourceid><addsrcrecordid>eNpVkdFLHDEQxoO06PX0xT9A8liErclOdjd5KYhoFYRC0ecwZrN3qbnNmWQP6l_fLGelPg3M95tvhvkIOeXsG2cKLkaMF6vn3HE4IAsObV0J1dafyIIBayrOhDwiX1L6zRgXvBGH5KgGBQVhC-IfIppnN66oGynmsHGG9jaj8zSvLR2m0WQXRvQ0ba1x6N0rzo008zsXi_DLmku6tt4ZTDaVMcw0GDNF2k9xdra74Kd56Jh8HtAne_JWl-Tx5vrh6ra6__nj7uryvjLQyVyhGqCXXW9Y3zIplRoMqH7g-MS5FFLigJ2yg6xByCLZBiVI1bSIdYOADSzJ973vdnra2N7YMZdD9Ta6DcY_OqDTH5XRrfUq7DRILqCFYvD1zSCGl8mmrDcuGes9jjZMSXMhVN1JVr6_JOd71MSQUrTD-xrO9ByPLvHofTwFPvv_sHf0Xx7wF-_bj7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449278009</pqid></control><display><type>article</type><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</creator><creatorcontrib>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</creatorcontrib><description>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt713</identifier><identifier>PMID: 23939620</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - classification ; Amino Acid Sequence ; Binding Sites ; Cystoviridae - enzymology ; Endodeoxyribonucleases - chemistry ; Evolution, Molecular ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Enzymes ; Nucleotides - chemistry ; Protein Folding ; Protein Structure, Tertiary ; Rec A Recombinases - classification ; RNA - chemistry ; RNA Helicases - chemistry ; RNA Helicases - classification ; Viral Proteins - chemistry ; Viral Proteins - classification</subject><ispartof>Nucleic acids research, 2013-11, Vol.41 (20), p.9396-9410</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</citedby><cites>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23939620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Omari, Kamel</creatorcontrib><creatorcontrib>Meier, Christoph</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Sutton, Geoff</creatorcontrib><creatorcontrib>Grimes, Jonathan M</creatorcontrib><creatorcontrib>Poranen, Minna M</creatorcontrib><creatorcontrib>Bamford, Dennis H</creatorcontrib><creatorcontrib>Tuma, Roman</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Mancini, Erika J</creatorcontrib><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - classification</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Cystoviridae - enzymology</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Evolution, Molecular</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Enzymes</subject><subject>Nucleotides - chemistry</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Rec A Recombinases - classification</subject><subject>RNA - chemistry</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - classification</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - classification</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdFLHDEQxoO06PX0xT9A8liErclOdjd5KYhoFYRC0ecwZrN3qbnNmWQP6l_fLGelPg3M95tvhvkIOeXsG2cKLkaMF6vn3HE4IAsObV0J1dafyIIBayrOhDwiX1L6zRgXvBGH5KgGBQVhC-IfIppnN66oGynmsHGG9jaj8zSvLR2m0WQXRvQ0ba1x6N0rzo008zsXi_DLmku6tt4ZTDaVMcw0GDNF2k9xdra74Kd56Jh8HtAne_JWl-Tx5vrh6ra6__nj7uryvjLQyVyhGqCXXW9Y3zIplRoMqH7g-MS5FFLigJ2yg6xByCLZBiVI1bSIdYOADSzJ973vdnra2N7YMZdD9Ta6DcY_OqDTH5XRrfUq7DRILqCFYvD1zSCGl8mmrDcuGes9jjZMSXMhVN1JVr6_JOd71MSQUrTD-xrO9ByPLvHofTwFPvv_sHf0Xx7wF-_bj7Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>El Omari, Kamel</creator><creator>Meier, Christoph</creator><creator>Kainov, Denis</creator><creator>Sutton, Geoff</creator><creator>Grimes, Jonathan M</creator><creator>Poranen, Minna M</creator><creator>Bamford, Dennis H</creator><creator>Tuma, Roman</creator><creator>Stuart, David I</creator><creator>Mancini, Erika J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><author>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - classification</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Cystoviridae - enzymology</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Evolution, Molecular</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Enzymes</topic><topic>Nucleotides - chemistry</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Rec A Recombinases - classification</topic><topic>RNA - chemistry</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - classification</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Omari, Kamel</creatorcontrib><creatorcontrib>Meier, Christoph</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Sutton, Geoff</creatorcontrib><creatorcontrib>Grimes, Jonathan M</creatorcontrib><creatorcontrib>Poranen, Minna M</creatorcontrib><creatorcontrib>Bamford, Dennis H</creatorcontrib><creatorcontrib>Tuma, Roman</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Mancini, Erika J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Omari, Kamel</au><au>Meier, Christoph</au><au>Kainov, Denis</au><au>Sutton, Geoff</au><au>Grimes, Jonathan M</au><au>Poranen, Minna M</au><au>Bamford, Dennis H</au><au>Tuma, Roman</au><au>Stuart, David I</au><au>Mancini, Erika J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>41</volume><issue>20</issue><spage>9396</spage><epage>9410</epage><pages>9396-9410</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23939620</pmid><doi>10.1093/nar/gkt713</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2013-11, Vol.41 (20), p.9396-9410
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814363
source MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine Triphosphatases - chemistry
Adenosine Triphosphatases - classification
Amino Acid Sequence
Binding Sites
Cystoviridae - enzymology
Endodeoxyribonucleases - chemistry
Evolution, Molecular
Models, Molecular
Molecular Sequence Data
Nucleic Acid Enzymes
Nucleotides - chemistry
Protein Folding
Protein Structure, Tertiary
Rec A Recombinases - classification
RNA - chemistry
RNA Helicases - chemistry
RNA Helicases - classification
Viral Proteins - chemistry
Viral Proteins - classification
title Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20in%20atomic%20detail%20the%20functional%20specializations%20in%20viral%20RecA%20helicases%20that%20occur%20during%20evolution&rft.jtitle=Nucleic%20acids%20research&rft.au=El%20Omari,%20Kamel&rft.date=2013-11-01&rft.volume=41&rft.issue=20&rft.spage=9396&rft.epage=9410&rft.pages=9396-9410&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt713&rft_dat=%3Cproquest_pubme%3E1449278009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449278009&rft_id=info:pmid/23939620&rfr_iscdi=true