Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution
Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We prev...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2013-11, Vol.41 (20), p.9396-9410 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9410 |
---|---|
container_issue | 20 |
container_start_page | 9396 |
container_title | Nucleic acids research |
container_volume | 41 |
creator | El Omari, Kamel Meier, Christoph Kainov, Denis Sutton, Geoff Grimes, Jonathan M Poranen, Minna M Bamford, Dennis H Tuma, Roman Stuart, David I Mancini, Erika J |
description | Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme. |
doi_str_mv | 10.1093/nar/gkt713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1449278009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</originalsourceid><addsrcrecordid>eNpVkdFLHDEQxoO06PX0xT9A8liErclOdjd5KYhoFYRC0ecwZrN3qbnNmWQP6l_fLGelPg3M95tvhvkIOeXsG2cKLkaMF6vn3HE4IAsObV0J1dafyIIBayrOhDwiX1L6zRgXvBGH5KgGBQVhC-IfIppnN66oGynmsHGG9jaj8zSvLR2m0WQXRvQ0ba1x6N0rzo008zsXi_DLmku6tt4ZTDaVMcw0GDNF2k9xdra74Kd56Jh8HtAne_JWl-Tx5vrh6ra6__nj7uryvjLQyVyhGqCXXW9Y3zIplRoMqH7g-MS5FFLigJ2yg6xByCLZBiVI1bSIdYOADSzJ973vdnra2N7YMZdD9Ta6DcY_OqDTH5XRrfUq7DRILqCFYvD1zSCGl8mmrDcuGes9jjZMSXMhVN1JVr6_JOd71MSQUrTD-xrO9ByPLvHofTwFPvv_sHf0Xx7wF-_bj7Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449278009</pqid></control><display><type>article</type><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</creator><creatorcontrib>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</creatorcontrib><description>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkt713</identifier><identifier>PMID: 23939620</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Adenosine Triphosphatases - chemistry ; Adenosine Triphosphatases - classification ; Amino Acid Sequence ; Binding Sites ; Cystoviridae - enzymology ; Endodeoxyribonucleases - chemistry ; Evolution, Molecular ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Enzymes ; Nucleotides - chemistry ; Protein Folding ; Protein Structure, Tertiary ; Rec A Recombinases - classification ; RNA - chemistry ; RNA Helicases - chemistry ; RNA Helicases - classification ; Viral Proteins - chemistry ; Viral Proteins - classification</subject><ispartof>Nucleic acids research, 2013-11, Vol.41 (20), p.9396-9410</ispartof><rights>The Author(s) 2013. Published by Oxford University Press. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</citedby><cites>FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23939620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>El Omari, Kamel</creatorcontrib><creatorcontrib>Meier, Christoph</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Sutton, Geoff</creatorcontrib><creatorcontrib>Grimes, Jonathan M</creatorcontrib><creatorcontrib>Poranen, Minna M</creatorcontrib><creatorcontrib>Bamford, Dennis H</creatorcontrib><creatorcontrib>Tuma, Roman</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Mancini, Erika J</creatorcontrib><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</description><subject>Adenosine Triphosphatases - chemistry</subject><subject>Adenosine Triphosphatases - classification</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Cystoviridae - enzymology</subject><subject>Endodeoxyribonucleases - chemistry</subject><subject>Evolution, Molecular</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Enzymes</subject><subject>Nucleotides - chemistry</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>Rec A Recombinases - classification</subject><subject>RNA - chemistry</subject><subject>RNA Helicases - chemistry</subject><subject>RNA Helicases - classification</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - classification</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdFLHDEQxoO06PX0xT9A8liErclOdjd5KYhoFYRC0ecwZrN3qbnNmWQP6l_fLGelPg3M95tvhvkIOeXsG2cKLkaMF6vn3HE4IAsObV0J1dafyIIBayrOhDwiX1L6zRgXvBGH5KgGBQVhC-IfIppnN66oGynmsHGG9jaj8zSvLR2m0WQXRvQ0ba1x6N0rzo008zsXi_DLmku6tt4ZTDaVMcw0GDNF2k9xdra74Kd56Jh8HtAne_JWl-Tx5vrh6ra6__nj7uryvjLQyVyhGqCXXW9Y3zIplRoMqH7g-MS5FFLigJ2yg6xByCLZBiVI1bSIdYOADSzJ973vdnra2N7YMZdD9Ta6DcY_OqDTH5XRrfUq7DRILqCFYvD1zSCGl8mmrDcuGes9jjZMSXMhVN1JVr6_JOd71MSQUrTD-xrO9ByPLvHofTwFPvv_sHf0Xx7wF-_bj7Y</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>El Omari, Kamel</creator><creator>Meier, Christoph</creator><creator>Kainov, Denis</creator><creator>Sutton, Geoff</creator><creator>Grimes, Jonathan M</creator><creator>Poranen, Minna M</creator><creator>Bamford, Dennis H</creator><creator>Tuma, Roman</creator><creator>Stuart, David I</creator><creator>Mancini, Erika J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</title><author>El Omari, Kamel ; Meier, Christoph ; Kainov, Denis ; Sutton, Geoff ; Grimes, Jonathan M ; Poranen, Minna M ; Bamford, Dennis H ; Tuma, Roman ; Stuart, David I ; Mancini, Erika J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-a9f3d87dc0d608899fc39df1ab118488afa79ef82348fc3e5a838956aa25a3a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphatases - chemistry</topic><topic>Adenosine Triphosphatases - classification</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Cystoviridae - enzymology</topic><topic>Endodeoxyribonucleases - chemistry</topic><topic>Evolution, Molecular</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Enzymes</topic><topic>Nucleotides - chemistry</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>Rec A Recombinases - classification</topic><topic>RNA - chemistry</topic><topic>RNA Helicases - chemistry</topic><topic>RNA Helicases - classification</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Omari, Kamel</creatorcontrib><creatorcontrib>Meier, Christoph</creatorcontrib><creatorcontrib>Kainov, Denis</creatorcontrib><creatorcontrib>Sutton, Geoff</creatorcontrib><creatorcontrib>Grimes, Jonathan M</creatorcontrib><creatorcontrib>Poranen, Minna M</creatorcontrib><creatorcontrib>Bamford, Dennis H</creatorcontrib><creatorcontrib>Tuma, Roman</creatorcontrib><creatorcontrib>Stuart, David I</creatorcontrib><creatorcontrib>Mancini, Erika J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Omari, Kamel</au><au>Meier, Christoph</au><au>Kainov, Denis</au><au>Sutton, Geoff</au><au>Grimes, Jonathan M</au><au>Poranen, Minna M</au><au>Bamford, Dennis H</au><au>Tuma, Roman</au><au>Stuart, David I</au><au>Mancini, Erika J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>41</volume><issue>20</issue><spage>9396</spage><epage>9410</epage><pages>9396-9410</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><abstract>Many complex viruses package their genomes into empty protein shells and bacteriophages of the Cystoviridae family provide some of the simplest models for this. The cystoviral hexameric NTPase, P4, uses chemical energy to translocate single-stranded RNA genomic precursors into the procapsid. We previously dissected the mechanism of RNA translocation for one such phage, 12, and have now investigated three further highly divergent, cystoviral P4 NTPases (from 6, 8 and 13). High-resolution crystal structures of the set of P4s allow a structure-based phylogenetic analysis, which reveals that these proteins form a distinct subfamily of the RecA-type ATPases. Although the proteins share a common catalytic core, they have different specificities and control mechanisms, which we map onto divergent N- and C-terminal domains. Thus, the RNA loading and tight coupling of NTPase activity with RNA translocation in 8 P4 is due to a remarkable C-terminal structure, which wraps right around the outside of the molecule to insert into the central hole where RNA binds to coupled L1 and L2 loops, whereas in 12 P4, a C-terminal residue, serine 282, forms a specific hydrogen bond to the N7 of purines ring to confer purine specificity for the 12 enzyme.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>23939620</pmid><doi>10.1093/nar/gkt713</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2013-11, Vol.41 (20), p.9396-9410 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3814363 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Oxford Journals Open Access Collection; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adenosine Triphosphatases - chemistry Adenosine Triphosphatases - classification Amino Acid Sequence Binding Sites Cystoviridae - enzymology Endodeoxyribonucleases - chemistry Evolution, Molecular Models, Molecular Molecular Sequence Data Nucleic Acid Enzymes Nucleotides - chemistry Protein Folding Protein Structure, Tertiary Rec A Recombinases - classification RNA - chemistry RNA Helicases - chemistry RNA Helicases - classification Viral Proteins - chemistry Viral Proteins - classification |
title | Tracking in atomic detail the functional specializations in viral RecA helicases that occur during evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A27%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20in%20atomic%20detail%20the%20functional%20specializations%20in%20viral%20RecA%20helicases%20that%20occur%20during%20evolution&rft.jtitle=Nucleic%20acids%20research&rft.au=El%20Omari,%20Kamel&rft.date=2013-11-01&rft.volume=41&rft.issue=20&rft.spage=9396&rft.epage=9410&rft.pages=9396-9410&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkt713&rft_dat=%3Cproquest_pubme%3E1449278009%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449278009&rft_id=info:pmid/23939620&rfr_iscdi=true |