Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus

Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2013-11, Vol.195 (3), p.871-881
Hauptverfasser: Diaconeasa, Bianca, Mazock, G Harper, Mahowald, Anthony P, Dubreuil, Ronald R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 881
container_issue 3
container_start_page 871
container_title Genetics (Austin)
container_volume 195
creator Diaconeasa, Bianca
Mazock, G Harper
Mahowald, Anthony P
Dubreuil, Ronald R
description Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.
doi_str_mv 10.1534/genetics.113.155192
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3813870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505334340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-81c96837f73f20eacf1e4babffd4f11810e1d17def07b7320335d4e0c67ead713</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhoMotlZ_gSABb7zZmszJJDNeCNJqFQretNchk5zsps5OxiSz0P56s2xbqldC4ITkOS_n4yXkLWenvAXxcY0TlmDzKedQX1reN8_IMe8FrBoJ_PmT-xF5lfMNY0z2bfeSHDWCgWqkPCZ3FwcVmsviAmYaPc0z2pLCROspG6SjSTszUm8KHaK73SPnKeY4b8Jo6BZHM8W1yQXTJ4q74HCySH1M1NAp7nCkY5iDo8tczC-kZp5NMmXJr8kLb8aMb-7jCbn-9vXq7Pvq8ufFj7MvlysrpCyrjttedqC8At8wNNZzFIMZvHfCc95xhtxx5dAzNShoGEDrBDIrFRqnOJyQzwfdeRm26CxOJZlRzylsTbrV0QT9988UNnoddxo6Dp1iVeDDvUCKvxfMRW9DtjjWvjEuWfOWtQACxH-gQvSNUj1rKvr-H_QmLmmqk6iUhE52qt1TcKBsnXhO6B_r5kzvbaAfbKCrDfTBBjXr3dOWH3Me9g5_AMnxsqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1463868752</pqid></control><display><type>article</type><title>Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Diaconeasa, Bianca ; Mazock, G Harper ; Mahowald, Anthony P ; Dubreuil, Ronald R</creator><creatorcontrib>Diaconeasa, Bianca ; Mazock, G Harper ; Mahowald, Anthony P ; Dubreuil, Ronald R</creatorcontrib><description>Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.</description><identifier>ISSN: 1943-2631</identifier><identifier>ISSN: 0016-6731</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.113.155192</identifier><identifier>PMID: 24037266</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Society of America</publisher><subject>Animals ; Animals, Genetically Modified ; Biological Transport, Active - genetics ; Cell Membrane - metabolism ; Cytoplasm ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila melanogaster - ultrastructure ; Drosophila Proteins - antagonists &amp; inhibitors ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Fat Body - metabolism ; Fat Body - ultrastructure ; Female ; Gene Dosage ; Gene Knockdown Techniques ; Genes, Insect ; Genetic research ; Genotype &amp; phenotype ; Insects ; Investigations ; Larva - genetics ; Larva - metabolism ; Larva - ultrastructure ; Lipid Metabolism - genetics ; Lipids ; Male ; Models, Biological ; Mutation ; Phenotype ; Spectrin - antagonists &amp; inhibitors ; Spectrin - genetics ; Spectrin - metabolism</subject><ispartof>Genetics (Austin), 2013-11, Vol.195 (3), p.871-881</ispartof><rights>Copyright Genetics Society of America Nov 2013</rights><rights>Copyright © 2013 by the Genetics Society of America 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-81c96837f73f20eacf1e4babffd4f11810e1d17def07b7320335d4e0c67ead713</citedby><cites>FETCH-LOGICAL-c466t-81c96837f73f20eacf1e4babffd4f11810e1d17def07b7320335d4e0c67ead713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24037266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Diaconeasa, Bianca</creatorcontrib><creatorcontrib>Mazock, G Harper</creatorcontrib><creatorcontrib>Mahowald, Anthony P</creatorcontrib><creatorcontrib>Dubreuil, Ronald R</creatorcontrib><title>Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biological Transport, Active - genetics</subject><subject>Cell Membrane - metabolism</subject><subject>Cytoplasm</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila melanogaster - ultrastructure</subject><subject>Drosophila Proteins - antagonists &amp; inhibitors</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Fat Body - metabolism</subject><subject>Fat Body - ultrastructure</subject><subject>Female</subject><subject>Gene Dosage</subject><subject>Gene Knockdown Techniques</subject><subject>Genes, Insect</subject><subject>Genetic research</subject><subject>Genotype &amp; phenotype</subject><subject>Insects</subject><subject>Investigations</subject><subject>Larva - genetics</subject><subject>Larva - metabolism</subject><subject>Larva - ultrastructure</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipids</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Phenotype</subject><subject>Spectrin - antagonists &amp; inhibitors</subject><subject>Spectrin - genetics</subject><subject>Spectrin - metabolism</subject><issn>1943-2631</issn><issn>0016-6731</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhoMotlZ_gSABb7zZmszJJDNeCNJqFQretNchk5zsps5OxiSz0P56s2xbqldC4ITkOS_n4yXkLWenvAXxcY0TlmDzKedQX1reN8_IMe8FrBoJ_PmT-xF5lfMNY0z2bfeSHDWCgWqkPCZ3FwcVmsviAmYaPc0z2pLCROspG6SjSTszUm8KHaK73SPnKeY4b8Jo6BZHM8W1yQXTJ4q74HCySH1M1NAp7nCkY5iDo8tczC-kZp5NMmXJr8kLb8aMb-7jCbn-9vXq7Pvq8ufFj7MvlysrpCyrjttedqC8At8wNNZzFIMZvHfCc95xhtxx5dAzNShoGEDrBDIrFRqnOJyQzwfdeRm26CxOJZlRzylsTbrV0QT9988UNnoddxo6Dp1iVeDDvUCKvxfMRW9DtjjWvjEuWfOWtQACxH-gQvSNUj1rKvr-H_QmLmmqk6iUhE52qt1TcKBsnXhO6B_r5kzvbaAfbKCrDfTBBjXr3dOWH3Me9g5_AMnxsqI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Diaconeasa, Bianca</creator><creator>Mazock, G Harper</creator><creator>Mahowald, Anthony P</creator><creator>Dubreuil, Ronald R</creator><general>Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus</title><author>Diaconeasa, Bianca ; Mazock, G Harper ; Mahowald, Anthony P ; Dubreuil, Ronald R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-81c96837f73f20eacf1e4babffd4f11810e1d17def07b7320335d4e0c67ead713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biological Transport, Active - genetics</topic><topic>Cell Membrane - metabolism</topic><topic>Cytoplasm</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila melanogaster - ultrastructure</topic><topic>Drosophila Proteins - antagonists &amp; inhibitors</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Fat Body - metabolism</topic><topic>Fat Body - ultrastructure</topic><topic>Female</topic><topic>Gene Dosage</topic><topic>Gene Knockdown Techniques</topic><topic>Genes, Insect</topic><topic>Genetic research</topic><topic>Genotype &amp; phenotype</topic><topic>Insects</topic><topic>Investigations</topic><topic>Larva - genetics</topic><topic>Larva - metabolism</topic><topic>Larva - ultrastructure</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipids</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Phenotype</topic><topic>Spectrin - antagonists &amp; inhibitors</topic><topic>Spectrin - genetics</topic><topic>Spectrin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diaconeasa, Bianca</creatorcontrib><creatorcontrib>Mazock, G Harper</creatorcontrib><creatorcontrib>Mahowald, Anthony P</creatorcontrib><creatorcontrib>Dubreuil, Ronald R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diaconeasa, Bianca</au><au>Mazock, G Harper</au><au>Mahowald, Anthony P</au><au>Dubreuil, Ronald R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>195</volume><issue>3</issue><spage>871</spage><epage>881</epage><pages>871-881</pages><issn>1943-2631</issn><issn>0016-6731</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Spectrin cytoskeleton defects produce a host of phenotypes affecting the plasma membrane, cell polarity, and secretory membrane traffic. However, many of the underlying molecular mechanisms remain unexplained by prevailing models. Here we used the larval fat body of Drosophila melanogaster as a genetic model system to further elucidate mechanisms of αβ-spectrin function. The results provide unexpected new insights into spectrin function as well as mechanisms of dietary fat uptake and storage. We show that loss of α- or β-spectrin in the fat body eliminated a population of small cortical lipid droplets and altered plasma membrane architecture, but did not affect viability of the organism. We present a novel model in which αβ-spectrin directly couples lipid uptake at the plasma membrane to lipid droplet growth in the cytoplasm. In contrast, strong overexpression of β-spectrin caused fat body atrophy and larval lethality. Overexpression of β-spectrin also perturbed transport of dietary fat from the midgut to the fat body. This hypermorphic phenotype appears to be the result of blocking secretion of the lipid carrier lipophorin from fat cells. However, this midgut phenotype was never seen with spectrin loss of function, suggesting that spectrin is not normally required for lipophorin secretion or function. The β-spectrin hypermorphic phenotype was ameliorated by co-overexpression of α-spectrin. Based on the overexpression results here, we propose that β-spectrin family members may be prone to hypermorphic effects (including effects on secretion) if their activity is not properly regulated.</abstract><cop>United States</cop><pub>Genetics Society of America</pub><pmid>24037266</pmid><doi>10.1534/genetics.113.155192</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-2631
ispartof Genetics (Austin), 2013-11, Vol.195 (3), p.871-881
issn 1943-2631
0016-6731
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3813870
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Animals, Genetically Modified
Biological Transport, Active - genetics
Cell Membrane - metabolism
Cytoplasm
Drosophila melanogaster
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila melanogaster - ultrastructure
Drosophila Proteins - antagonists & inhibitors
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Fat Body - metabolism
Fat Body - ultrastructure
Female
Gene Dosage
Gene Knockdown Techniques
Genes, Insect
Genetic research
Genotype & phenotype
Insects
Investigations
Larva - genetics
Larva - metabolism
Larva - ultrastructure
Lipid Metabolism - genetics
Lipids
Male
Models, Biological
Mutation
Phenotype
Spectrin - antagonists & inhibitors
Spectrin - genetics
Spectrin - metabolism
title Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20studies%20of%20spectrin%20in%20the%20larval%20fat%20body%20of%20Drosophila%20melanogaster:%20evidence%20for%20a%20novel%20lipid%20uptake%20apparatus&rft.jtitle=Genetics%20(Austin)&rft.au=Diaconeasa,%20Bianca&rft.date=2013-11-01&rft.volume=195&rft.issue=3&rft.spage=871&rft.epage=881&rft.pages=871-881&rft.issn=1943-2631&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.113.155192&rft_dat=%3Cproquest_pubme%3E1505334340%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1463868752&rft_id=info:pmid/24037266&rfr_iscdi=true