Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores

Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2013-08, Vol.7 (8), p.6816-6824
Hauptverfasser: Belkin, Maxim, Maffeo, Christopher, Wells, David B, Aksimentiev, Aleksei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6824
container_issue 8
container_start_page 6816
container_title ACS nano
container_volume 7
creator Belkin, Maxim
Maffeo, Christopher
Wells, David B
Aksimentiev, Aleksei
description Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.
doi_str_mv 10.1021/nn403575n
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3812943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534839646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMotlYXvoBkI-hiNJlMMjMbodSfCrUuquAuZJJMOyVNajIV-vZGWouC4OomOR-He3IAOMXoCqMUX1ubIUJzavdAF5eEJahgb_u7M8UdcBTCHCGaFzk7BJ2UxIkw6QI-ab1u5ayxUyisggNnW--M0Qo-ubZxFroaTqJqdBLRiETldtyHjYUjJ4UxazjUoo2vE2caFaF4gWNh3dJ5HY7BQS1M0Cfb2QOv93cvg2Eyen54HPRHiaAkbxOZS1aQsq6qNMUZkZlAFcuplpqlhCqSSiKKUtKqQEiWAimEGRElq-pMMVUq0gM3G9_lqlpoJXWMIQxf-mYh_Jo70fDfim1mfOo-OClwWmYkGlxsDbx7X-nQ8kUTpDZGWO1WgeOcpYiWGUP_o5RkMQzLWEQvN6j0LgSv691GGPGv7viuu8ie_YywI7_LisD5BhAy8LlbeRt_9A-jT3ruoRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534839646</pqid></control><display><type>article</type><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</creator><creatorcontrib>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</creatorcontrib><description>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn403575n</identifier><identifier>PMID: 23876013</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Computer Simulation ; Continuums ; Deoxyribonucleic acid ; DNA - chemistry ; DNA, Single-Stranded - chemistry ; Drug Design ; Gene sequencing ; Gold - chemistry ; Heating ; Heating equipment ; Hot Temperature ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Motion ; Nanopores ; Nanostructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Porosity ; Strands ; Stress, Mechanical ; Stretching ; Temperature</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6816-6824</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</citedby><cites>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn403575n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn403575n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23876013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belkin, Maxim</creatorcontrib><creatorcontrib>Maffeo, Christopher</creatorcontrib><creatorcontrib>Wells, David B</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</description><subject>Biosensing Techniques</subject><subject>Computer Simulation</subject><subject>Continuums</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Drug Design</subject><subject>Gene sequencing</subject><subject>Gold - chemistry</subject><subject>Heating</subject><subject>Heating equipment</subject><subject>Hot Temperature</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Motion</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Porosity</subject><subject>Strands</subject><subject>Stress, Mechanical</subject><subject>Stretching</subject><subject>Temperature</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1KAzEUhYMotlYXvoBkI-hiNJlMMjMbodSfCrUuquAuZJJMOyVNajIV-vZGWouC4OomOR-He3IAOMXoCqMUX1ubIUJzavdAF5eEJahgb_u7M8UdcBTCHCGaFzk7BJ2UxIkw6QI-ab1u5ayxUyisggNnW--M0Qo-ubZxFroaTqJqdBLRiETldtyHjYUjJ4UxazjUoo2vE2caFaF4gWNh3dJ5HY7BQS1M0Cfb2QOv93cvg2Eyen54HPRHiaAkbxOZS1aQsq6qNMUZkZlAFcuplpqlhCqSSiKKUtKqQEiWAimEGRElq-pMMVUq0gM3G9_lqlpoJXWMIQxf-mYh_Jo70fDfim1mfOo-OClwWmYkGlxsDbx7X-nQ8kUTpDZGWO1WgeOcpYiWGUP_o5RkMQzLWEQvN6j0LgSv691GGPGv7viuu8ie_YywI7_LisD5BhAy8LlbeRt_9A-jT3ruoRE</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Belkin, Maxim</creator><creator>Maffeo, Christopher</creator><creator>Wells, David B</creator><creator>Aksimentiev, Aleksei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><author>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biosensing Techniques</topic><topic>Computer Simulation</topic><topic>Continuums</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Drug Design</topic><topic>Gene sequencing</topic><topic>Gold - chemistry</topic><topic>Heating</topic><topic>Heating equipment</topic><topic>Hot Temperature</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Motion</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Porosity</topic><topic>Strands</topic><topic>Stress, Mechanical</topic><topic>Stretching</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belkin, Maxim</creatorcontrib><creatorcontrib>Maffeo, Christopher</creatorcontrib><creatorcontrib>Wells, David B</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belkin, Maxim</au><au>Maffeo, Christopher</au><au>Wells, David B</au><au>Aksimentiev, Aleksei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6816</spage><epage>6824</epage><pages>6816-6824</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23876013</pmid><doi>10.1021/nn403575n</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2013-08, Vol.7 (8), p.6816-6824
issn 1936-0851
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3812943
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques
Computer Simulation
Continuums
Deoxyribonucleic acid
DNA - chemistry
DNA, Single-Stranded - chemistry
Drug Design
Gene sequencing
Gold - chemistry
Heating
Heating equipment
Hot Temperature
Metal Nanoparticles - chemistry
Molecular Dynamics Simulation
Motion
Nanopores
Nanostructure
Nanotechnology - methods
Nucleic Acid Conformation
Porosity
Strands
Stress, Mechanical
Stretching
Temperature
title Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20and%20Controlled%20Motion%20of%20Single-Stranded%20DNA%20in%20Locally%20Heated%20Solid-State%20Nanopores&rft.jtitle=ACS%20nano&rft.au=Belkin,%20Maxim&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6816&rft.epage=6824&rft.pages=6816-6824&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn403575n&rft_dat=%3Cproquest_pubme%3E1534839646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534839646&rft_id=info:pmid/23876013&rfr_iscdi=true