Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores
Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformation...
Gespeichert in:
Veröffentlicht in: | ACS nano 2013-08, Vol.7 (8), p.6816-6824 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6824 |
---|---|
container_issue | 8 |
container_start_page | 6816 |
container_title | ACS nano |
container_volume | 7 |
creator | Belkin, Maxim Maffeo, Christopher Wells, David B Aksimentiev, Aleksei |
description | Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. |
doi_str_mv | 10.1021/nn403575n |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3812943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534839646</sourcerecordid><originalsourceid>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</originalsourceid><addsrcrecordid>eNqFkc1KAzEUhYMotlYXvoBkI-hiNJlMMjMbodSfCrUuquAuZJJMOyVNajIV-vZGWouC4OomOR-He3IAOMXoCqMUX1ubIUJzavdAF5eEJahgb_u7M8UdcBTCHCGaFzk7BJ2UxIkw6QI-ab1u5ayxUyisggNnW--M0Qo-ubZxFroaTqJqdBLRiETldtyHjYUjJ4UxazjUoo2vE2caFaF4gWNh3dJ5HY7BQS1M0Cfb2QOv93cvg2Eyen54HPRHiaAkbxOZS1aQsq6qNMUZkZlAFcuplpqlhCqSSiKKUtKqQEiWAimEGRElq-pMMVUq0gM3G9_lqlpoJXWMIQxf-mYh_Jo70fDfim1mfOo-OClwWmYkGlxsDbx7X-nQ8kUTpDZGWO1WgeOcpYiWGUP_o5RkMQzLWEQvN6j0LgSv691GGPGv7viuu8ie_YywI7_LisD5BhAy8LlbeRt_9A-jT3ruoRE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534839646</pqid></control><display><type>article</type><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</creator><creatorcontrib>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</creatorcontrib><description>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn403575n</identifier><identifier>PMID: 23876013</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biosensing Techniques ; Computer Simulation ; Continuums ; Deoxyribonucleic acid ; DNA - chemistry ; DNA, Single-Stranded - chemistry ; Drug Design ; Gene sequencing ; Gold - chemistry ; Heating ; Heating equipment ; Hot Temperature ; Metal Nanoparticles - chemistry ; Molecular Dynamics Simulation ; Motion ; Nanopores ; Nanostructure ; Nanotechnology - methods ; Nucleic Acid Conformation ; Porosity ; Strands ; Stress, Mechanical ; Stretching ; Temperature</subject><ispartof>ACS nano, 2013-08, Vol.7 (8), p.6816-6824</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</citedby><cites>FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn403575n$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn403575n$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23876013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belkin, Maxim</creatorcontrib><creatorcontrib>Maffeo, Christopher</creatorcontrib><creatorcontrib>Wells, David B</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</description><subject>Biosensing Techniques</subject><subject>Computer Simulation</subject><subject>Continuums</subject><subject>Deoxyribonucleic acid</subject><subject>DNA - chemistry</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Drug Design</subject><subject>Gene sequencing</subject><subject>Gold - chemistry</subject><subject>Heating</subject><subject>Heating equipment</subject><subject>Hot Temperature</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Motion</subject><subject>Nanopores</subject><subject>Nanostructure</subject><subject>Nanotechnology - methods</subject><subject>Nucleic Acid Conformation</subject><subject>Porosity</subject><subject>Strands</subject><subject>Stress, Mechanical</subject><subject>Stretching</subject><subject>Temperature</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1KAzEUhYMotlYXvoBkI-hiNJlMMjMbodSfCrUuquAuZJJMOyVNajIV-vZGWouC4OomOR-He3IAOMXoCqMUX1ubIUJzavdAF5eEJahgb_u7M8UdcBTCHCGaFzk7BJ2UxIkw6QI-ab1u5ayxUyisggNnW--M0Qo-ubZxFroaTqJqdBLRiETldtyHjYUjJ4UxazjUoo2vE2caFaF4gWNh3dJ5HY7BQS1M0Cfb2QOv93cvg2Eyen54HPRHiaAkbxOZS1aQsq6qNMUZkZlAFcuplpqlhCqSSiKKUtKqQEiWAimEGRElq-pMMVUq0gM3G9_lqlpoJXWMIQxf-mYh_Jo70fDfim1mfOo-OClwWmYkGlxsDbx7X-nQ8kUTpDZGWO1WgeOcpYiWGUP_o5RkMQzLWEQvN6j0LgSv691GGPGv7viuu8ie_YywI7_LisD5BhAy8LlbeRt_9A-jT3ruoRE</recordid><startdate>20130827</startdate><enddate>20130827</enddate><creator>Belkin, Maxim</creator><creator>Maffeo, Christopher</creator><creator>Wells, David B</creator><creator>Aksimentiev, Aleksei</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>5PM</scope></search><sort><creationdate>20130827</creationdate><title>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</title><author>Belkin, Maxim ; Maffeo, Christopher ; Wells, David B ; Aksimentiev, Aleksei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a537t-c7c6839fbb22143c4a0b675ece6235d32c3a89c5b800c9a0d0163a96bf4d6d9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Biosensing Techniques</topic><topic>Computer Simulation</topic><topic>Continuums</topic><topic>Deoxyribonucleic acid</topic><topic>DNA - chemistry</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Drug Design</topic><topic>Gene sequencing</topic><topic>Gold - chemistry</topic><topic>Heating</topic><topic>Heating equipment</topic><topic>Hot Temperature</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Motion</topic><topic>Nanopores</topic><topic>Nanostructure</topic><topic>Nanotechnology - methods</topic><topic>Nucleic Acid Conformation</topic><topic>Porosity</topic><topic>Strands</topic><topic>Stress, Mechanical</topic><topic>Stretching</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belkin, Maxim</creatorcontrib><creatorcontrib>Maffeo, Christopher</creatorcontrib><creatorcontrib>Wells, David B</creatorcontrib><creatorcontrib>Aksimentiev, Aleksei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belkin, Maxim</au><au>Maffeo, Christopher</au><au>Wells, David B</au><au>Aksimentiev, Aleksei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2013-08-27</date><risdate>2013</risdate><volume>7</volume><issue>8</issue><spage>6816</spage><epage>6824</epage><pages>6816-6824</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23876013</pmid><doi>10.1021/nn403575n</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2013-08, Vol.7 (8), p.6816-6824 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3812943 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biosensing Techniques Computer Simulation Continuums Deoxyribonucleic acid DNA - chemistry DNA, Single-Stranded - chemistry Drug Design Gene sequencing Gold - chemistry Heating Heating equipment Hot Temperature Metal Nanoparticles - chemistry Molecular Dynamics Simulation Motion Nanopores Nanostructure Nanotechnology - methods Nucleic Acid Conformation Porosity Strands Stress, Mechanical Stretching Temperature |
title | Stretching and Controlled Motion of Single-Stranded DNA in Locally Heated Solid-State Nanopores |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stretching%20and%20Controlled%20Motion%20of%20Single-Stranded%20DNA%20in%20Locally%20Heated%20Solid-State%20Nanopores&rft.jtitle=ACS%20nano&rft.au=Belkin,%20Maxim&rft.date=2013-08-27&rft.volume=7&rft.issue=8&rft.spage=6816&rft.epage=6824&rft.pages=6816-6824&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn403575n&rft_dat=%3Cproquest_pubme%3E1534839646%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534839646&rft_id=info:pmid/23876013&rfr_iscdi=true |