Hypoglycemia Early Alarm Systems Based on Multivariable Models
Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycem...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2013-09, Vol.52 (35), p.12329-12336 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12336 |
---|---|
container_issue | 35 |
container_start_page | 12329 |
container_title | Industrial & engineering chemistry research |
container_volume | 52 |
creator | Turksoy, Kamuran Bayrak, Elif S Quinn, Lauretta Littlejohn, Elizabeth Rollins, Derrick Cinar, Ali |
description | Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence. |
doi_str_mv | 10.1021/ie3034015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826584154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgio6jC19AuhF0Uc21STYDKt5AcaGuw2mbaoe0GZNW6NtbmXFQEFydRT5-cs6P0AHBpwRTclZbhhnHRGygCREUpwJzsYkmWCmVCqXEDtqNcY4xFoLzbbRDOVGSs2yCZrfDwr-6obBNDckVBDck5w5CkzwNsbNNTC4g2jLxbfLQu67-gFBD7mzy4Evr4h7aqsBFu7-aU_RyffV8eZveP97cXZ7fp8Al6dIcFNOSykxlBRZQEFxixgooAXLOpMWVBmKlpJXWAjBVpa0Iz3OZ5xr0SKZotsxd9Hljy8K2XQBnFqFuIAzGQ21-v7T1m3n1H4YpQrTIxoDjVUDw772NnWnqWFjnoLW-j4aOF1Ncaib_pUTRbLRE8P9ppimTRHI10pMlLYKPMdhq_XmCzVeLZt3iaA9_bruW37WN4GgJoIhm7vvQjsf_I-gTiciimw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692371748</pqid></control><display><type>article</type><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><source>ACS Publications</source><creator>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</creator><creatorcontrib>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</creatorcontrib><description>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie3034015</identifier><identifier>PMID: 24187436</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alarm systems ; Algorithms ; blood glucose ; chemistry ; children ; engineering ; Glucose ; Hypoglycemia ; insulin-dependent diabetes mellitus ; Mathematical models ; Pancreas ; parents ; Patients ; prediction ; Recursive ; time series analysis</subject><ispartof>Industrial & engineering chemistry research, 2013-09, Vol.52 (35), p.12329-12336</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</citedby><cites>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie3034015$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie3034015$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24187436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turksoy, Kamuran</creatorcontrib><creatorcontrib>Bayrak, Elif S</creatorcontrib><creatorcontrib>Quinn, Lauretta</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Rollins, Derrick</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><title>Industrial & engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</description><subject>Alarm systems</subject><subject>Algorithms</subject><subject>blood glucose</subject><subject>chemistry</subject><subject>children</subject><subject>engineering</subject><subject>Glucose</subject><subject>Hypoglycemia</subject><subject>insulin-dependent diabetes mellitus</subject><subject>Mathematical models</subject><subject>Pancreas</subject><subject>parents</subject><subject>Patients</subject><subject>prediction</subject><subject>Recursive</subject><subject>time series analysis</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKxDAUBuAgio6jC19AuhF0Uc21STYDKt5AcaGuw2mbaoe0GZNW6NtbmXFQEFydRT5-cs6P0AHBpwRTclZbhhnHRGygCREUpwJzsYkmWCmVCqXEDtqNcY4xFoLzbbRDOVGSs2yCZrfDwr-6obBNDckVBDck5w5CkzwNsbNNTC4g2jLxbfLQu67-gFBD7mzy4Evr4h7aqsBFu7-aU_RyffV8eZveP97cXZ7fp8Al6dIcFNOSykxlBRZQEFxixgooAXLOpMWVBmKlpJXWAjBVpa0Iz3OZ5xr0SKZotsxd9Hljy8K2XQBnFqFuIAzGQ21-v7T1m3n1H4YpQrTIxoDjVUDw772NnWnqWFjnoLW-j4aOF1Ncaib_pUTRbLRE8P9ppimTRHI10pMlLYKPMdhq_XmCzVeLZt3iaA9_bruW37WN4GgJoIhm7vvQjsf_I-gTiciimw</recordid><startdate>20130904</startdate><enddate>20130904</enddate><creator>Turksoy, Kamuran</creator><creator>Bayrak, Elif S</creator><creator>Quinn, Lauretta</creator><creator>Littlejohn, Elizabeth</creator><creator>Rollins, Derrick</creator><creator>Cinar, Ali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130904</creationdate><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><author>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alarm systems</topic><topic>Algorithms</topic><topic>blood glucose</topic><topic>chemistry</topic><topic>children</topic><topic>engineering</topic><topic>Glucose</topic><topic>Hypoglycemia</topic><topic>insulin-dependent diabetes mellitus</topic><topic>Mathematical models</topic><topic>Pancreas</topic><topic>parents</topic><topic>Patients</topic><topic>prediction</topic><topic>Recursive</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turksoy, Kamuran</creatorcontrib><creatorcontrib>Bayrak, Elif S</creatorcontrib><creatorcontrib>Quinn, Lauretta</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Rollins, Derrick</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial & engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turksoy, Kamuran</au><au>Bayrak, Elif S</au><au>Quinn, Lauretta</au><au>Littlejohn, Elizabeth</au><au>Rollins, Derrick</au><au>Cinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoglycemia Early Alarm Systems Based on Multivariable Models</atitle><jtitle>Industrial & engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2013-09-04</date><risdate>2013</risdate><volume>52</volume><issue>35</issue><spage>12329</spage><epage>12336</epage><pages>12329-12336</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24187436</pmid><doi>10.1021/ie3034015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-5885 |
ispartof | Industrial & engineering chemistry research, 2013-09, Vol.52 (35), p.12329-12336 |
issn | 0888-5885 1520-5045 1520-5045 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956 |
source | ACS Publications |
subjects | Alarm systems Algorithms blood glucose chemistry children engineering Glucose Hypoglycemia insulin-dependent diabetes mellitus Mathematical models Pancreas parents Patients prediction Recursive time series analysis |
title | Hypoglycemia Early Alarm Systems Based on Multivariable Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoglycemia%20Early%20Alarm%20Systems%20Based%20on%20Multivariable%20Models&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Turksoy,%20Kamuran&rft.date=2013-09-04&rft.volume=52&rft.issue=35&rft.spage=12329&rft.epage=12336&rft.pages=12329-12336&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie3034015&rft_dat=%3Cproquest_pubme%3E1826584154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692371748&rft_id=info:pmid/24187436&rfr_iscdi=true |