Hypoglycemia Early Alarm Systems Based on Multivariable Models

Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2013-09, Vol.52 (35), p.12329-12336
Hauptverfasser: Turksoy, Kamuran, Bayrak, Elif S, Quinn, Lauretta, Littlejohn, Elizabeth, Rollins, Derrick, Cinar, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12336
container_issue 35
container_start_page 12329
container_title Industrial & engineering chemistry research
container_volume 52
creator Turksoy, Kamuran
Bayrak, Elif S
Quinn, Lauretta
Littlejohn, Elizabeth
Rollins, Derrick
Cinar, Ali
description Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.
doi_str_mv 10.1021/ie3034015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1826584154</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</originalsourceid><addsrcrecordid>eNqF0ctKxDAUBuAgio6jC19AuhF0Uc21STYDKt5AcaGuw2mbaoe0GZNW6NtbmXFQEFydRT5-cs6P0AHBpwRTclZbhhnHRGygCREUpwJzsYkmWCmVCqXEDtqNcY4xFoLzbbRDOVGSs2yCZrfDwr-6obBNDckVBDck5w5CkzwNsbNNTC4g2jLxbfLQu67-gFBD7mzy4Evr4h7aqsBFu7-aU_RyffV8eZveP97cXZ7fp8Al6dIcFNOSykxlBRZQEFxixgooAXLOpMWVBmKlpJXWAjBVpa0Iz3OZ5xr0SKZotsxd9Hljy8K2XQBnFqFuIAzGQ21-v7T1m3n1H4YpQrTIxoDjVUDw772NnWnqWFjnoLW-j4aOF1Ncaib_pUTRbLRE8P9ppimTRHI10pMlLYKPMdhq_XmCzVeLZt3iaA9_bruW37WN4GgJoIhm7vvQjsf_I-gTiciimw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1692371748</pqid></control><display><type>article</type><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><source>ACS Publications</source><creator>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</creator><creatorcontrib>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</creatorcontrib><description>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</description><identifier>ISSN: 0888-5885</identifier><identifier>ISSN: 1520-5045</identifier><identifier>EISSN: 1520-5045</identifier><identifier>DOI: 10.1021/ie3034015</identifier><identifier>PMID: 24187436</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Alarm systems ; Algorithms ; blood glucose ; chemistry ; children ; engineering ; Glucose ; Hypoglycemia ; insulin-dependent diabetes mellitus ; Mathematical models ; Pancreas ; parents ; Patients ; prediction ; Recursive ; time series analysis</subject><ispartof>Industrial &amp; engineering chemistry research, 2013-09, Vol.52 (35), p.12329-12336</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</citedby><cites>FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ie3034015$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ie3034015$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24187436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Turksoy, Kamuran</creatorcontrib><creatorcontrib>Bayrak, Elif S</creatorcontrib><creatorcontrib>Quinn, Lauretta</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Rollins, Derrick</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><title>Industrial &amp; engineering chemistry research</title><addtitle>Ind. Eng. Chem. Res</addtitle><description>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</description><subject>Alarm systems</subject><subject>Algorithms</subject><subject>blood glucose</subject><subject>chemistry</subject><subject>children</subject><subject>engineering</subject><subject>Glucose</subject><subject>Hypoglycemia</subject><subject>insulin-dependent diabetes mellitus</subject><subject>Mathematical models</subject><subject>Pancreas</subject><subject>parents</subject><subject>Patients</subject><subject>prediction</subject><subject>Recursive</subject><subject>time series analysis</subject><issn>0888-5885</issn><issn>1520-5045</issn><issn>1520-5045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0ctKxDAUBuAgio6jC19AuhF0Uc21STYDKt5AcaGuw2mbaoe0GZNW6NtbmXFQEFydRT5-cs6P0AHBpwRTclZbhhnHRGygCREUpwJzsYkmWCmVCqXEDtqNcY4xFoLzbbRDOVGSs2yCZrfDwr-6obBNDckVBDck5w5CkzwNsbNNTC4g2jLxbfLQu67-gFBD7mzy4Evr4h7aqsBFu7-aU_RyffV8eZveP97cXZ7fp8Al6dIcFNOSykxlBRZQEFxixgooAXLOpMWVBmKlpJXWAjBVpa0Iz3OZ5xr0SKZotsxd9Hljy8K2XQBnFqFuIAzGQ21-v7T1m3n1H4YpQrTIxoDjVUDw772NnWnqWFjnoLW-j4aOF1Ncaib_pUTRbLRE8P9ppimTRHI10pMlLYKPMdhq_XmCzVeLZt3iaA9_bruW37WN4GgJoIhm7vvQjsf_I-gTiciimw</recordid><startdate>20130904</startdate><enddate>20130904</enddate><creator>Turksoy, Kamuran</creator><creator>Bayrak, Elif S</creator><creator>Quinn, Lauretta</creator><creator>Littlejohn, Elizabeth</creator><creator>Rollins, Derrick</creator><creator>Cinar, Ali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20130904</creationdate><title>Hypoglycemia Early Alarm Systems Based on Multivariable Models</title><author>Turksoy, Kamuran ; Bayrak, Elif S ; Quinn, Lauretta ; Littlejohn, Elizabeth ; Rollins, Derrick ; Cinar, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-ba839727686c05ac10d033cadaab437e0f9a1e772f995a028def14bb7bb9a9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Alarm systems</topic><topic>Algorithms</topic><topic>blood glucose</topic><topic>chemistry</topic><topic>children</topic><topic>engineering</topic><topic>Glucose</topic><topic>Hypoglycemia</topic><topic>insulin-dependent diabetes mellitus</topic><topic>Mathematical models</topic><topic>Pancreas</topic><topic>parents</topic><topic>Patients</topic><topic>prediction</topic><topic>Recursive</topic><topic>time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turksoy, Kamuran</creatorcontrib><creatorcontrib>Bayrak, Elif S</creatorcontrib><creatorcontrib>Quinn, Lauretta</creatorcontrib><creatorcontrib>Littlejohn, Elizabeth</creatorcontrib><creatorcontrib>Rollins, Derrick</creatorcontrib><creatorcontrib>Cinar, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Industrial &amp; engineering chemistry research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turksoy, Kamuran</au><au>Bayrak, Elif S</au><au>Quinn, Lauretta</au><au>Littlejohn, Elizabeth</au><au>Rollins, Derrick</au><au>Cinar, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoglycemia Early Alarm Systems Based on Multivariable Models</atitle><jtitle>Industrial &amp; engineering chemistry research</jtitle><addtitle>Ind. Eng. Chem. Res</addtitle><date>2013-09-04</date><risdate>2013</risdate><volume>52</volume><issue>35</issue><spage>12329</spage><epage>12336</epage><pages>12329-12336</pages><issn>0888-5885</issn><issn>1520-5045</issn><eissn>1520-5045</eissn><abstract>Hypoglycemia is a major challenge of artificial pancreas systems and a source of concern for potential users and parents of young children with Type 1 diabetes (T1D). Early alarms to warn of the potential of hypoglycemia are essential and should provide enough time to take action to avoid hypoglycemia. Many alarm systems proposed in the literature are based on interpretation of recent trends in glucose values. In the present study, subject-specific recursive linear time series models are introduced as a better alternative to capture glucose variations and predict future blood glucose concentrations. These models are then used in hypoglycemia early alarm systems that notify patients to take action to prevent hypoglycemia before it happens. The models developed and the hypoglycemia alarm system are tested retrospectively using T1D subject data. A Savitzky-Golay filter and a Kalman filter are used to reduce noise in patient data. The hypoglycemia alarm algorithm is developed by using predictions of future glucose concentrations from recursive models. The modeling algorithm enables the dynamic adaptation of models to inter/intra-subject variation and glycemic disturbances and provides satisfactory glucose concentration prediction with relatively small error. The alarm systems demonstrate good performance in prediction of hypoglycemia and ultimately in prevention of its occurrence.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24187436</pmid><doi>10.1021/ie3034015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0888-5885
ispartof Industrial & engineering chemistry research, 2013-09, Vol.52 (35), p.12329-12336
issn 0888-5885
1520-5045
1520-5045
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3811956
source ACS Publications
subjects Alarm systems
Algorithms
blood glucose
chemistry
children
engineering
Glucose
Hypoglycemia
insulin-dependent diabetes mellitus
Mathematical models
Pancreas
parents
Patients
prediction
Recursive
time series analysis
title Hypoglycemia Early Alarm Systems Based on Multivariable Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoglycemia%20Early%20Alarm%20Systems%20Based%20on%20Multivariable%20Models&rft.jtitle=Industrial%20&%20engineering%20chemistry%20research&rft.au=Turksoy,%20Kamuran&rft.date=2013-09-04&rft.volume=52&rft.issue=35&rft.spage=12329&rft.epage=12336&rft.pages=12329-12336&rft.issn=0888-5885&rft.eissn=1520-5045&rft_id=info:doi/10.1021/ie3034015&rft_dat=%3Cproquest_pubme%3E1826584154%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1692371748&rft_id=info:pmid/24187436&rfr_iscdi=true