Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers
Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear react...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2013-11, Vol.123 (11), p.4935-4944 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4944 |
---|---|
container_issue | 11 |
container_start_page | 4935 |
container_title | The Journal of clinical investigation |
container_volume | 123 |
creator | Ricarte-Filho, Julio C Li, Sheng Garcia-Rendueles, Maria E R Montero-Conde, Cristina Voza, Francesca Knauf, Jeffrey A Heguy, Adriana Viale, Agnes Bogdanova, Tetyana Thomas, Geraldine A Mason, Christopher E Fagin, James A |
description | Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program. |
doi_str_mv | 10.1172/jci69766 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3809792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A356355276</galeid><sourcerecordid>A356355276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-3f95c7fab85ba6a5087b26ab0dc1a307c70c75876d94de5ced20259a48a128c3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhoMobl0Ff4EMCKIXs-ZjMsncCEvxo7KwoIt3EjLJmTZ1mtRkRuy_N6113ZFeSC4CJ885J-c9L0JPCb4gRNDXa-PqRtT1PTQjnMtSUibvoxnGlJSNYPIMPUppjTGpKl49RGe0IowTJmfo68KCH1znjB5c8EXoim_O6wRFN6ZDwJuwBA-pcL7YhjSU8xVEH9pdX0Rt3SGtdN6OBmwxrHYxOFsY7Q3E9Bg96HSf4MnxPkc3797ezD-UV9fvF_PLq9IIzIaSdQ03otOt5K2uNcdStLTWLbaGaIZFpozgUtS2qSzw3IhiyhtdSU2oNOwcvflddju2G7AmTxR1r7bRbXTcqaCdmr54t1LL8EMxiRvR0Fzg5bFADN9HSIPauGSg77WHMCZFOOaMZSFFRp__g67DGH2eTpGqlllfIuRfaql7UM53Ifc1-6LqkvGacU5FnanyBLVXO38yeOhcDk_4ixN8PhY2zpxMeDVJyMwAP4elHlNSi8-f_p-9_jJlX9xhV6D7YZVCP-69kKbgUVgTQ0oRutulEKz21lUf54uDdTP67O4Sb8E_XmW_AJwP5js</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468454178</pqid></control><display><type>article</type><title>Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ricarte-Filho, Julio C ; Li, Sheng ; Garcia-Rendueles, Maria E R ; Montero-Conde, Cristina ; Voza, Francesca ; Knauf, Jeffrey A ; Heguy, Adriana ; Viale, Agnes ; Bogdanova, Tetyana ; Thomas, Geraldine A ; Mason, Christopher E ; Fagin, James A</creator><creatorcontrib>Ricarte-Filho, Julio C ; Li, Sheng ; Garcia-Rendueles, Maria E R ; Montero-Conde, Cristina ; Voza, Francesca ; Knauf, Jeffrey A ; Heguy, Adriana ; Viale, Agnes ; Bogdanova, Tetyana ; Thomas, Geraldine A ; Mason, Christopher E ; Fagin, James A</creatorcontrib><description>Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/jci69766</identifier><identifier>PMID: 24135138</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Adolescent ; Animals ; Base Sequence ; Biomedical research ; Carcinoma - genetics ; Carcinoma, Papillary ; Chernobyl Nuclear Accident ; Child ; Child, Preschool ; Cohort Studies ; Deoxyribonucleic acid ; Development and progression ; DNA ; DNA, Neoplasm - genetics ; ETS Translocation Variant 6 Protein ; Female ; Gene Rearrangement ; Genes ; Genetic aspects ; Genomes ; Health aspects ; Humans ; Identification and classification ; Kinases ; Male ; MAP Kinase Signaling System - genetics ; Mice ; Molecular Sequence Data ; Mutation ; Neoplasms, Radiation-Induced - genetics ; NIH 3T3 Cells ; Oncogene Fusion ; Oncogenes ; Pediatrics ; Phosphatidylinositol 3-Kinases - genetics ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; PPAR gamma - genetics ; Proteins ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins c-ets - genetics ; Proto-Oncogene Proteins c-ret - genetics ; Receptor, trkC - genetics ; Receptors, Thyrotropin - genetics ; Repressor Proteins - genetics ; Thyroid cancer ; Thyroid Cancer, Papillary ; Thyroid Neoplasms - genetics ; Tumors ; Ukraine ; Young Adult</subject><ispartof>The Journal of clinical investigation, 2013-11, Vol.123 (11), p.4935-4944</ispartof><rights>COPYRIGHT 2013 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Nov 2013</rights><rights>Copyright © 2013, American Society for Clinical Investigation 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-3f95c7fab85ba6a5087b26ab0dc1a307c70c75876d94de5ced20259a48a128c3</citedby><cites>FETCH-LOGICAL-c703t-3f95c7fab85ba6a5087b26ab0dc1a307c70c75876d94de5ced20259a48a128c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809792/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809792/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24135138$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ricarte-Filho, Julio C</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Garcia-Rendueles, Maria E R</creatorcontrib><creatorcontrib>Montero-Conde, Cristina</creatorcontrib><creatorcontrib>Voza, Francesca</creatorcontrib><creatorcontrib>Knauf, Jeffrey A</creatorcontrib><creatorcontrib>Heguy, Adriana</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Bogdanova, Tetyana</creatorcontrib><creatorcontrib>Thomas, Geraldine A</creatorcontrib><creatorcontrib>Mason, Christopher E</creatorcontrib><creatorcontrib>Fagin, James A</creatorcontrib><title>Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.</description><subject>Adolescent</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Biomedical research</subject><subject>Carcinoma - genetics</subject><subject>Carcinoma, Papillary</subject><subject>Chernobyl Nuclear Accident</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cohort Studies</subject><subject>Deoxyribonucleic acid</subject><subject>Development and progression</subject><subject>DNA</subject><subject>DNA, Neoplasm - genetics</subject><subject>ETS Translocation Variant 6 Protein</subject><subject>Female</subject><subject>Gene Rearrangement</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Identification and classification</subject><subject>Kinases</subject><subject>Male</subject><subject>MAP Kinase Signaling System - genetics</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Neoplasms, Radiation-Induced - genetics</subject><subject>NIH 3T3 Cells</subject><subject>Oncogene Fusion</subject><subject>Oncogenes</subject><subject>Pediatrics</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>PPAR gamma - genetics</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins c-ets - genetics</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Receptor, trkC - genetics</subject><subject>Receptors, Thyrotropin - genetics</subject><subject>Repressor Proteins - genetics</subject><subject>Thyroid cancer</subject><subject>Thyroid Cancer, Papillary</subject><subject>Thyroid Neoplasms - genetics</subject><subject>Tumors</subject><subject>Ukraine</subject><subject>Young Adult</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl2LEzEUhoMobl0Ff4EMCKIXs-ZjMsncCEvxo7KwoIt3EjLJmTZ1mtRkRuy_N6113ZFeSC4CJ885J-c9L0JPCb4gRNDXa-PqRtT1PTQjnMtSUibvoxnGlJSNYPIMPUppjTGpKl49RGe0IowTJmfo68KCH1znjB5c8EXoim_O6wRFN6ZDwJuwBA-pcL7YhjSU8xVEH9pdX0Rt3SGtdN6OBmwxrHYxOFsY7Q3E9Bg96HSf4MnxPkc3797ezD-UV9fvF_PLq9IIzIaSdQ03otOt5K2uNcdStLTWLbaGaIZFpozgUtS2qSzw3IhiyhtdSU2oNOwcvflddju2G7AmTxR1r7bRbXTcqaCdmr54t1LL8EMxiRvR0Fzg5bFADN9HSIPauGSg77WHMCZFOOaMZSFFRp__g67DGH2eTpGqlllfIuRfaql7UM53Ifc1-6LqkvGacU5FnanyBLVXO38yeOhcDk_4ixN8PhY2zpxMeDVJyMwAP4elHlNSi8-f_p-9_jJlX9xhV6D7YZVCP-69kKbgUVgTQ0oRutulEKz21lUf54uDdTP67O4Sb8E_XmW_AJwP5js</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ricarte-Filho, Julio C</creator><creator>Li, Sheng</creator><creator>Garcia-Rendueles, Maria E R</creator><creator>Montero-Conde, Cristina</creator><creator>Voza, Francesca</creator><creator>Knauf, Jeffrey A</creator><creator>Heguy, Adriana</creator><creator>Viale, Agnes</creator><creator>Bogdanova, Tetyana</creator><creator>Thomas, Geraldine A</creator><creator>Mason, Christopher E</creator><creator>Fagin, James A</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7T5</scope><scope>7TO</scope><scope>H94</scope><scope>5PM</scope></search><sort><creationdate>20131101</creationdate><title>Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers</title><author>Ricarte-Filho, Julio C ; Li, Sheng ; Garcia-Rendueles, Maria E R ; Montero-Conde, Cristina ; Voza, Francesca ; Knauf, Jeffrey A ; Heguy, Adriana ; Viale, Agnes ; Bogdanova, Tetyana ; Thomas, Geraldine A ; Mason, Christopher E ; Fagin, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-3f95c7fab85ba6a5087b26ab0dc1a307c70c75876d94de5ced20259a48a128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescent</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Biomedical research</topic><topic>Carcinoma - genetics</topic><topic>Carcinoma, Papillary</topic><topic>Chernobyl Nuclear Accident</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cohort Studies</topic><topic>Deoxyribonucleic acid</topic><topic>Development and progression</topic><topic>DNA</topic><topic>DNA, Neoplasm - genetics</topic><topic>ETS Translocation Variant 6 Protein</topic><topic>Female</topic><topic>Gene Rearrangement</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Identification and classification</topic><topic>Kinases</topic><topic>Male</topic><topic>MAP Kinase Signaling System - genetics</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Neoplasms, Radiation-Induced - genetics</topic><topic>NIH 3T3 Cells</topic><topic>Oncogene Fusion</topic><topic>Oncogenes</topic><topic>Pediatrics</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>PPAR gamma - genetics</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins c-ets - genetics</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Receptor, trkC - genetics</topic><topic>Receptors, Thyrotropin - genetics</topic><topic>Repressor Proteins - genetics</topic><topic>Thyroid cancer</topic><topic>Thyroid Cancer, Papillary</topic><topic>Thyroid Neoplasms - genetics</topic><topic>Tumors</topic><topic>Ukraine</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ricarte-Filho, Julio C</creatorcontrib><creatorcontrib>Li, Sheng</creatorcontrib><creatorcontrib>Garcia-Rendueles, Maria E R</creatorcontrib><creatorcontrib>Montero-Conde, Cristina</creatorcontrib><creatorcontrib>Voza, Francesca</creatorcontrib><creatorcontrib>Knauf, Jeffrey A</creatorcontrib><creatorcontrib>Heguy, Adriana</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Bogdanova, Tetyana</creatorcontrib><creatorcontrib>Thomas, Geraldine A</creatorcontrib><creatorcontrib>Mason, Christopher E</creatorcontrib><creatorcontrib>Fagin, James A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ricarte-Filho, Julio C</au><au>Li, Sheng</au><au>Garcia-Rendueles, Maria E R</au><au>Montero-Conde, Cristina</au><au>Voza, Francesca</au><au>Knauf, Jeffrey A</au><au>Heguy, Adriana</au><au>Viale, Agnes</au><au>Bogdanova, Tetyana</au><au>Thomas, Geraldine A</au><au>Mason, Christopher E</au><au>Fagin, James A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>123</volume><issue>11</issue><spage>4935</spage><epage>4944</epage><pages>4935-4944</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>24135138</pmid><doi>10.1172/jci69766</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2013-11, Vol.123 (11), p.4935-4944 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3809792 |
source | MEDLINE; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adolescent Animals Base Sequence Biomedical research Carcinoma - genetics Carcinoma, Papillary Chernobyl Nuclear Accident Child Child, Preschool Cohort Studies Deoxyribonucleic acid Development and progression DNA DNA, Neoplasm - genetics ETS Translocation Variant 6 Protein Female Gene Rearrangement Genes Genetic aspects Genomes Health aspects Humans Identification and classification Kinases Male MAP Kinase Signaling System - genetics Mice Molecular Sequence Data Mutation Neoplasms, Radiation-Induced - genetics NIH 3T3 Cells Oncogene Fusion Oncogenes Pediatrics Phosphatidylinositol 3-Kinases - genetics Phosphotransferases (Alcohol Group Acceptor) - genetics PPAR gamma - genetics Proteins Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins c-ets - genetics Proto-Oncogene Proteins c-ret - genetics Receptor, trkC - genetics Receptors, Thyrotropin - genetics Repressor Proteins - genetics Thyroid cancer Thyroid Cancer, Papillary Thyroid Neoplasms - genetics Tumors Ukraine Young Adult |
title | Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20kinase%20fusion%20oncogenes%20in%20post-Chernobyl%20radiation-induced%20thyroid%20cancers&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Ricarte-Filho,%20Julio%20C&rft.date=2013-11-01&rft.volume=123&rft.issue=11&rft.spage=4935&rft.epage=4944&rft.pages=4935-4944&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/jci69766&rft_dat=%3Cgale_pubme%3EA356355276%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468454178&rft_id=info:pmid/24135138&rft_galeid=A356355276&rfr_iscdi=true |