Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation

An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2004-03, Vol.23 (5), p.1008-1019
Hauptverfasser: Spahn, Christian MT, Gomez-Lorenzo, Maria G, Grassucci, Robert A, Jørgensen, Rene, Andersen, Gregers R, Beckmann, Roland, Penczek, Pawel A, Ballesta, Juan PG, Frank, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1019
container_issue 5
container_start_page 1008
container_title The EMBO journal
container_volume 23
creator Spahn, Christian MT
Gomez-Lorenzo, Maria G
Grassucci, Robert A
Jørgensen, Rene
Andersen, Gregers R
Beckmann, Roland
Penczek, Pawel A
Ballesta, Juan PG
Frank, Joachim
description An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.
doi_str_mv 10.1038/sj.emboj.7600102
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_380967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>984142541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEotPCnhWyWHSX4d68HC9YtMO0PDpF4iGWlpO5mXGaxMX2tPTf42lGbUFClSx54e8cn3tPFL1CmCKk5VvXTqmvTDvlBQBC8iSaYFZAnADPn0YTSAqMMyzFXrTvXAsAecnxebSHmeBFnsMkWr83vdID680V9TR4x0zDqDPDSnltBtao2hvLaH6SMDUsmV8To82FsjfG65qV8I1ZXRlnetqyutNeeWL-6_kR81YNrjP1rdOL6FmjOkcvd_dB9ONk_n32IT77cvpxdnQW10WWJ3GJCtKGY8ax4dRg2lRCIAcSDeZVXqFoCLJUUYmUFLAUGaUQjuKQgSiL9CB6N_pebqqelnWYyapOXlrdh9DSKC3_fhn0Wq7MlUxLEAUP-sOd3ppfG3Je9trV1HVqILNxkuM2XFo8CiJPeCbKreObf8DWbOwQliBR5GEILkSAYIRqa5yz1NwlRpDbrqVr5W3Xctd1kLx-OOm9YFduAMQIXOuObh41lPPF8ad7cxy1LsiGFdkHof8fKB412nn6ffefshcyLJbn8uf5qVwcL8osmeXyc_oHkMPYTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195260799</pqid></control><display><type>article</type><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><source>Springer Nature OA Free Journals</source><creator>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</creator><creatorcontrib>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</creatorcontrib><description>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600102</identifier><identifier>PMID: 14976550</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>80S ribosome ; Antifungal Agents - pharmacology ; cryo-EM ; Cryoelectron Microscopy ; Crystallography, X-Ray ; E coli ; eEF2 ; elongation factor eEF2 ; EMBO40 ; Escherichia coli ; Indenes ; Models, Molecular ; Movement ; Nucleic Acid Conformation ; Peptide Elongation Factor 2 - chemistry ; Peptide Elongation Factor 2 - metabolism ; Peptide Elongation Factor 2 - ultrastructure ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Ribosomes - chemistry ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RNA Transport ; RNA, Transfer - chemistry ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; sordarin ; Translocation ; tRNA translocation ; Yeasts</subject><ispartof>The EMBO journal, 2004-03, Vol.23 (5), p.1008-1019</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Mar 10, 2004</rights><rights>Copyright © 2004, European Molecular Biology Organization 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC380967/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC380967/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7600102$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spahn, Christian MT</creatorcontrib><creatorcontrib>Gomez-Lorenzo, Maria G</creatorcontrib><creatorcontrib>Grassucci, Robert A</creatorcontrib><creatorcontrib>Jørgensen, Rene</creatorcontrib><creatorcontrib>Andersen, Gregers R</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Penczek, Pawel A</creatorcontrib><creatorcontrib>Ballesta, Juan PG</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</description><subject>80S ribosome</subject><subject>Antifungal Agents - pharmacology</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>eEF2</subject><subject>elongation factor eEF2</subject><subject>EMBO40</subject><subject>Escherichia coli</subject><subject>Indenes</subject><subject>Models, Molecular</subject><subject>Movement</subject><subject>Nucleic Acid Conformation</subject><subject>Peptide Elongation Factor 2 - chemistry</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Peptide Elongation Factor 2 - ultrastructure</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA Transport</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>sordarin</subject><subject>Translocation</subject><subject>tRNA translocation</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhSMEotPCnhWyWHSX4d68HC9YtMO0PDpF4iGWlpO5mXGaxMX2tPTf42lGbUFClSx54e8cn3tPFL1CmCKk5VvXTqmvTDvlBQBC8iSaYFZAnADPn0YTSAqMMyzFXrTvXAsAecnxebSHmeBFnsMkWr83vdID680V9TR4x0zDqDPDSnltBtao2hvLaH6SMDUsmV8To82FsjfG65qV8I1ZXRlnetqyutNeeWL-6_kR81YNrjP1rdOL6FmjOkcvd_dB9ONk_n32IT77cvpxdnQW10WWJ3GJCtKGY8ax4dRg2lRCIAcSDeZVXqFoCLJUUYmUFLAUGaUQjuKQgSiL9CB6N_pebqqelnWYyapOXlrdh9DSKC3_fhn0Wq7MlUxLEAUP-sOd3ppfG3Je9trV1HVqILNxkuM2XFo8CiJPeCbKreObf8DWbOwQliBR5GEILkSAYIRqa5yz1NwlRpDbrqVr5W3Xctd1kLx-OOm9YFduAMQIXOuObh41lPPF8ad7cxy1LsiGFdkHof8fKB412nn6ffefshcyLJbn8uf5qVwcL8osmeXyc_oHkMPYTw</recordid><startdate>20040310</startdate><enddate>20040310</enddate><creator>Spahn, Christian MT</creator><creator>Gomez-Lorenzo, Maria G</creator><creator>Grassucci, Robert A</creator><creator>Jørgensen, Rene</creator><creator>Andersen, Gregers R</creator><creator>Beckmann, Roland</creator><creator>Penczek, Pawel A</creator><creator>Ballesta, Juan PG</creator><creator>Frank, Joachim</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040310</creationdate><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><author>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>80S ribosome</topic><topic>Antifungal Agents - pharmacology</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>eEF2</topic><topic>elongation factor eEF2</topic><topic>EMBO40</topic><topic>Escherichia coli</topic><topic>Indenes</topic><topic>Models, Molecular</topic><topic>Movement</topic><topic>Nucleic Acid Conformation</topic><topic>Peptide Elongation Factor 2 - chemistry</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Peptide Elongation Factor 2 - ultrastructure</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA Transport</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>sordarin</topic><topic>Translocation</topic><topic>tRNA translocation</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spahn, Christian MT</creatorcontrib><creatorcontrib>Gomez-Lorenzo, Maria G</creatorcontrib><creatorcontrib>Grassucci, Robert A</creatorcontrib><creatorcontrib>Jørgensen, Rene</creatorcontrib><creatorcontrib>Andersen, Gregers R</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Penczek, Pawel A</creatorcontrib><creatorcontrib>Ballesta, Juan PG</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spahn, Christian MT</au><au>Gomez-Lorenzo, Maria G</au><au>Grassucci, Robert A</au><au>Jørgensen, Rene</au><au>Andersen, Gregers R</au><au>Beckmann, Roland</au><au>Penczek, Pawel A</au><au>Ballesta, Juan PG</au><au>Frank, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2004-03-10</date><risdate>2004</risdate><volume>23</volume><issue>5</issue><spage>1008</spage><epage>1019</epage><pages>1008-1019</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>14976550</pmid><doi>10.1038/sj.emboj.7600102</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2004-03, Vol.23 (5), p.1008-1019
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_380967
source Springer Nature OA Free Journals
subjects 80S ribosome
Antifungal Agents - pharmacology
cryo-EM
Cryoelectron Microscopy
Crystallography, X-Ray
E coli
eEF2
elongation factor eEF2
EMBO40
Escherichia coli
Indenes
Models, Molecular
Movement
Nucleic Acid Conformation
Peptide Elongation Factor 2 - chemistry
Peptide Elongation Factor 2 - metabolism
Peptide Elongation Factor 2 - ultrastructure
Protein Binding
Protein Structure, Quaternary
Protein Structure, Tertiary
Protein Subunits - genetics
Protein Subunits - metabolism
Ribosomes - chemistry
Ribosomes - metabolism
Ribosomes - ultrastructure
RNA Transport
RNA, Transfer - chemistry
RNA, Transfer - genetics
RNA, Transfer - metabolism
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
sordarin
Translocation
tRNA translocation
Yeasts
title Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20movements%20of%20elongation%20factor%20eEF2%20and%20the%20eukaryotic%2080S%20ribosome%20facilitate%20tRNA%20translocation&rft.jtitle=The%20EMBO%20journal&rft.au=Spahn,%20Christian%20MT&rft.date=2004-03-10&rft.volume=23&rft.issue=5&rft.spage=1008&rft.epage=1019&rft.pages=1008-1019&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600102&rft_dat=%3Cproquest_C6C%3E984142541%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195260799&rft_id=info:pmid/14976550&rfr_iscdi=true