Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation
An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridge...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2004-03, Vol.23 (5), p.1008-1019 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1019 |
---|---|
container_issue | 5 |
container_start_page | 1008 |
container_title | The EMBO journal |
container_volume | 23 |
creator | Spahn, Christian MT Gomez-Lorenzo, Maria G Grassucci, Robert A Jørgensen, Rene Andersen, Gregers R Beckmann, Roland Penczek, Pawel A Ballesta, Juan PG Frank, Joachim |
description | An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to
Escherichia coli
70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction. |
doi_str_mv | 10.1038/sj.emboj.7600102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_380967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>984142541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEotPCnhWyWHSX4d68HC9YtMO0PDpF4iGWlpO5mXGaxMX2tPTf42lGbUFClSx54e8cn3tPFL1CmCKk5VvXTqmvTDvlBQBC8iSaYFZAnADPn0YTSAqMMyzFXrTvXAsAecnxebSHmeBFnsMkWr83vdID680V9TR4x0zDqDPDSnltBtao2hvLaH6SMDUsmV8To82FsjfG65qV8I1ZXRlnetqyutNeeWL-6_kR81YNrjP1rdOL6FmjOkcvd_dB9ONk_n32IT77cvpxdnQW10WWJ3GJCtKGY8ax4dRg2lRCIAcSDeZVXqFoCLJUUYmUFLAUGaUQjuKQgSiL9CB6N_pebqqelnWYyapOXlrdh9DSKC3_fhn0Wq7MlUxLEAUP-sOd3ppfG3Je9trV1HVqILNxkuM2XFo8CiJPeCbKreObf8DWbOwQliBR5GEILkSAYIRqa5yz1NwlRpDbrqVr5W3Xctd1kLx-OOm9YFduAMQIXOuObh41lPPF8ad7cxy1LsiGFdkHof8fKB412nn6ffefshcyLJbn8uf5qVwcL8osmeXyc_oHkMPYTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195260799</pqid></control><display><type>article</type><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><source>Springer Nature OA Free Journals</source><creator>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</creator><creatorcontrib>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</creatorcontrib><description>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to
Escherichia coli
70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600102</identifier><identifier>PMID: 14976550</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>80S ribosome ; Antifungal Agents - pharmacology ; cryo-EM ; Cryoelectron Microscopy ; Crystallography, X-Ray ; E coli ; eEF2 ; elongation factor eEF2 ; EMBO40 ; Escherichia coli ; Indenes ; Models, Molecular ; Movement ; Nucleic Acid Conformation ; Peptide Elongation Factor 2 - chemistry ; Peptide Elongation Factor 2 - metabolism ; Peptide Elongation Factor 2 - ultrastructure ; Protein Binding ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Ribosomes - chemistry ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RNA Transport ; RNA, Transfer - chemistry ; RNA, Transfer - genetics ; RNA, Transfer - metabolism ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; sordarin ; Translocation ; tRNA translocation ; Yeasts</subject><ispartof>The EMBO journal, 2004-03, Vol.23 (5), p.1008-1019</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Mar 10, 2004</rights><rights>Copyright © 2004, European Molecular Biology Organization 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC380967/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC380967/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7600102$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14976550$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Spahn, Christian MT</creatorcontrib><creatorcontrib>Gomez-Lorenzo, Maria G</creatorcontrib><creatorcontrib>Grassucci, Robert A</creatorcontrib><creatorcontrib>Jørgensen, Rene</creatorcontrib><creatorcontrib>Andersen, Gregers R</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Penczek, Pawel A</creatorcontrib><creatorcontrib>Ballesta, Juan PG</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to
Escherichia coli
70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</description><subject>80S ribosome</subject><subject>Antifungal Agents - pharmacology</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy</subject><subject>Crystallography, X-Ray</subject><subject>E coli</subject><subject>eEF2</subject><subject>elongation factor eEF2</subject><subject>EMBO40</subject><subject>Escherichia coli</subject><subject>Indenes</subject><subject>Models, Molecular</subject><subject>Movement</subject><subject>Nucleic Acid Conformation</subject><subject>Peptide Elongation Factor 2 - chemistry</subject><subject>Peptide Elongation Factor 2 - metabolism</subject><subject>Peptide Elongation Factor 2 - ultrastructure</subject><subject>Protein Binding</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Tertiary</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA Transport</subject><subject>RNA, Transfer - chemistry</subject><subject>RNA, Transfer - genetics</subject><subject>RNA, Transfer - metabolism</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>sordarin</subject><subject>Translocation</subject><subject>tRNA translocation</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhSMEotPCnhWyWHSX4d68HC9YtMO0PDpF4iGWlpO5mXGaxMX2tPTf42lGbUFClSx54e8cn3tPFL1CmCKk5VvXTqmvTDvlBQBC8iSaYFZAnADPn0YTSAqMMyzFXrTvXAsAecnxebSHmeBFnsMkWr83vdID680V9TR4x0zDqDPDSnltBtao2hvLaH6SMDUsmV8To82FsjfG65qV8I1ZXRlnetqyutNeeWL-6_kR81YNrjP1rdOL6FmjOkcvd_dB9ONk_n32IT77cvpxdnQW10WWJ3GJCtKGY8ax4dRg2lRCIAcSDeZVXqFoCLJUUYmUFLAUGaUQjuKQgSiL9CB6N_pebqqelnWYyapOXlrdh9DSKC3_fhn0Wq7MlUxLEAUP-sOd3ppfG3Je9trV1HVqILNxkuM2XFo8CiJPeCbKreObf8DWbOwQliBR5GEILkSAYIRqa5yz1NwlRpDbrqVr5W3Xctd1kLx-OOm9YFduAMQIXOuObh41lPPF8ad7cxy1LsiGFdkHof8fKB412nn6ffefshcyLJbn8uf5qVwcL8osmeXyc_oHkMPYTw</recordid><startdate>20040310</startdate><enddate>20040310</enddate><creator>Spahn, Christian MT</creator><creator>Gomez-Lorenzo, Maria G</creator><creator>Grassucci, Robert A</creator><creator>Jørgensen, Rene</creator><creator>Andersen, Gregers R</creator><creator>Beckmann, Roland</creator><creator>Penczek, Pawel A</creator><creator>Ballesta, Juan PG</creator><creator>Frank, Joachim</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040310</creationdate><title>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</title><author>Spahn, Christian MT ; Gomez-Lorenzo, Maria G ; Grassucci, Robert A ; Jørgensen, Rene ; Andersen, Gregers R ; Beckmann, Roland ; Penczek, Pawel A ; Ballesta, Juan PG ; Frank, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6452-81a03f71471f7ef13fb99170e9f15b5b19fe043ae81e260d94e30e30a70409863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>80S ribosome</topic><topic>Antifungal Agents - pharmacology</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy</topic><topic>Crystallography, X-Ray</topic><topic>E coli</topic><topic>eEF2</topic><topic>elongation factor eEF2</topic><topic>EMBO40</topic><topic>Escherichia coli</topic><topic>Indenes</topic><topic>Models, Molecular</topic><topic>Movement</topic><topic>Nucleic Acid Conformation</topic><topic>Peptide Elongation Factor 2 - chemistry</topic><topic>Peptide Elongation Factor 2 - metabolism</topic><topic>Peptide Elongation Factor 2 - ultrastructure</topic><topic>Protein Binding</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Tertiary</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA Transport</topic><topic>RNA, Transfer - chemistry</topic><topic>RNA, Transfer - genetics</topic><topic>RNA, Transfer - metabolism</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>sordarin</topic><topic>Translocation</topic><topic>tRNA translocation</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spahn, Christian MT</creatorcontrib><creatorcontrib>Gomez-Lorenzo, Maria G</creatorcontrib><creatorcontrib>Grassucci, Robert A</creatorcontrib><creatorcontrib>Jørgensen, Rene</creatorcontrib><creatorcontrib>Andersen, Gregers R</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><creatorcontrib>Penczek, Pawel A</creatorcontrib><creatorcontrib>Ballesta, Juan PG</creatorcontrib><creatorcontrib>Frank, Joachim</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spahn, Christian MT</au><au>Gomez-Lorenzo, Maria G</au><au>Grassucci, Robert A</au><au>Jørgensen, Rene</au><au>Andersen, Gregers R</au><au>Beckmann, Roland</au><au>Penczek, Pawel A</au><au>Ballesta, Juan PG</au><au>Frank, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2004-03-10</date><risdate>2004</risdate><volume>23</volume><issue>5</issue><spage>1008</spage><epage>1019</epage><pages>1008-1019</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>An 11.7‐Å‐resolution cryo‐EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet‐like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to
Escherichia coli
70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>14976550</pmid><doi>10.1038/sj.emboj.7600102</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2004-03, Vol.23 (5), p.1008-1019 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_380967 |
source | Springer Nature OA Free Journals |
subjects | 80S ribosome Antifungal Agents - pharmacology cryo-EM Cryoelectron Microscopy Crystallography, X-Ray E coli eEF2 elongation factor eEF2 EMBO40 Escherichia coli Indenes Models, Molecular Movement Nucleic Acid Conformation Peptide Elongation Factor 2 - chemistry Peptide Elongation Factor 2 - metabolism Peptide Elongation Factor 2 - ultrastructure Protein Binding Protein Structure, Quaternary Protein Structure, Tertiary Protein Subunits - genetics Protein Subunits - metabolism Ribosomes - chemistry Ribosomes - metabolism Ribosomes - ultrastructure RNA Transport RNA, Transfer - chemistry RNA, Transfer - genetics RNA, Transfer - metabolism Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - ultrastructure sordarin Translocation tRNA translocation Yeasts |
title | Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T12%3A24%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20movements%20of%20elongation%20factor%20eEF2%20and%20the%20eukaryotic%2080S%20ribosome%20facilitate%20tRNA%20translocation&rft.jtitle=The%20EMBO%20journal&rft.au=Spahn,%20Christian%20MT&rft.date=2004-03-10&rft.volume=23&rft.issue=5&rft.spage=1008&rft.epage=1019&rft.pages=1008-1019&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600102&rft_dat=%3Cproquest_C6C%3E984142541%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195260799&rft_id=info:pmid/14976550&rfr_iscdi=true |