Microbial colonization influences early B-lineage development in the gut lamina propria
Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2013-09, Vol.501 (7465), p.112-115 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 115 |
---|---|
container_issue | 7465 |
container_start_page | 112 |
container_title | Nature (London) |
container_volume | 501 |
creator | Wesemann, Duane R. Portuguese, Andrew J. Meyers, Robin M. Gallagher, Michael P. Cluff-Jones, Kendra Magee, Jennifer M. Panchakshari, Rohit A. Rodig, Scott J. Kepler, Thomas B. Alt, Frederick W. |
description | Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes.
Second site for B-cell formation
Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes.
The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (
IgH
) and light (
IgL
) chain variable region exons from germline gene segments to generate primary antibody repertoires
1
.
IgH
V(D)J assembly occurs in progenitor (pro-) B cells followed by that of
IgL
in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR).
Rag
expression can continue in immature B cells
2
, allowing continued
Igκ
V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity
3
,
4
,
5
. This ‘receptor editing’ process, which can also lead to
Igλ
V(D)J recombination and expression
3
,
6
,
7
, provides a mechanism whereby antigen encounter at the
Rag
-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of
Rag
-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor ed |
doi_str_mv | 10.1038/nature12496 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A342178319</galeid><sourcerecordid>A342178319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</originalsourceid><addsrcrecordid>eNpt0ctrFTEUB-BBFHtbXbmXQTeCjuadzEaoxRdU3Cguw7kzZ6YpmWSazBTqX9-UW-tVusrifPxyHlX1jJK3lHDzLsCyJqRMtOpBtaFCq0Yoox9WG0KYaYjh6qA6zPmcECKpFo-rA8ZbJRVtN9Wvb65LcevA1130MbjfsLgYahcGv2LoMNcIyV_VHxrvAsKIdY-X6OM8YVgKq5czrMd1qT1MLkA9pzgnB0-qRwP4jE9v36Pq56ePP06-NKffP389OT5tOqn00gyoBt7DdpDI-qEForZCERDAhGJMclRGMgG6YwykFqgIDqRVpDeaS8k1P6re73LndTth35WmEnhbWpggXdkIzv5bCe7MjvHSckO0UaYEvLoNSPFixbzYyeUOvYeAcc2WCk6MMJrKQl_-R8_jmkIZryghJFWGkb9qBI-27DGWf7ubUHvMBaPacNoW9eIe1c3uwu6j1ztUTpRzwuFuLkrsze3t3u2Lfr6_ijv759gFvNmBXEphxLTX_z1514PbuPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444516820</pqid></control><display><type>article</type><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</creator><creatorcontrib>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</creatorcontrib><description>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes.
Second site for B-cell formation
Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes.
The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (
IgH
) and light (
IgL
) chain variable region exons from germline gene segments to generate primary antibody repertoires
1
.
IgH
V(D)J assembly occurs in progenitor (pro-) B cells followed by that of
IgL
in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR).
Rag
expression can continue in immature B cells
2
, allowing continued
Igκ
V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity
3
,
4
,
5
. This ‘receptor editing’ process, which can also lead to
Igλ
V(D)J recombination and expression
3
,
6
,
7
, provides a mechanism whereby antigen encounter at the
Rag
-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of
Rag
-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing,
Rag
-expressing LP B-lineage cells have similar
V
H
repertoires, but significantly different
Vκ
repertoires, compared to those of
Rag2
-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of
Igλ
-expressing versus
Igκ
-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12496</identifier><identifier>PMID: 23965619</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/347 ; Animals ; B-Lymphocytes - cytology ; B-Lymphocytes - immunology ; B-Lymphocytes - metabolism ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - immunology ; Cell Lineage ; Colonization ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Editing ; Gene Rearrangement, B-Lymphocyte - genetics ; Genetic aspects ; Germ-Free Life ; Humanities and Social Sciences ; Immune system ; Immunoglobulins ; Immunoglobulins - genetics ; Immunoglobulins - immunology ; Immunology ; Intestinal Mucosa - cytology ; Intestinal Mucosa - immunology ; letter ; Lymphocytes ; Mice ; Microbial colonies ; Microbiota (Symbiotic organisms) ; multidisciplinary ; Population ; Precursor Cells, B-Lymphoid - cytology ; Precursor Cells, B-Lymphoid - metabolism ; Properties ; Rodents ; Science ; Spleen ; Symbiosis ; Weaning</subject><ispartof>Nature (London), 2013-09, Vol.501 (7465), p.112-115</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 5, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</citedby><cites>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12496$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12496$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23965619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wesemann, Duane R.</creatorcontrib><creatorcontrib>Portuguese, Andrew J.</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Gallagher, Michael P.</creatorcontrib><creatorcontrib>Cluff-Jones, Kendra</creatorcontrib><creatorcontrib>Magee, Jennifer M.</creatorcontrib><creatorcontrib>Panchakshari, Rohit A.</creatorcontrib><creatorcontrib>Rodig, Scott J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Alt, Frederick W.</creatorcontrib><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes.
Second site for B-cell formation
Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes.
The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (
IgH
) and light (
IgL
) chain variable region exons from germline gene segments to generate primary antibody repertoires
1
.
IgH
V(D)J assembly occurs in progenitor (pro-) B cells followed by that of
IgL
in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR).
Rag
expression can continue in immature B cells
2
, allowing continued
Igκ
V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity
3
,
4
,
5
. This ‘receptor editing’ process, which can also lead to
Igλ
V(D)J recombination and expression
3
,
6
,
7
, provides a mechanism whereby antigen encounter at the
Rag
-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of
Rag
-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing,
Rag
-expressing LP B-lineage cells have similar
V
H
repertoires, but significantly different
Vκ
repertoires, compared to those of
Rag2
-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of
Igλ
-expressing versus
Igκ
-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</description><subject>631/250/347</subject><subject>Animals</subject><subject>B-Lymphocytes - cytology</subject><subject>B-Lymphocytes - immunology</subject><subject>B-Lymphocytes - metabolism</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - immunology</subject><subject>Cell Lineage</subject><subject>Colonization</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Editing</subject><subject>Gene Rearrangement, B-Lymphocyte - genetics</subject><subject>Genetic aspects</subject><subject>Germ-Free Life</subject><subject>Humanities and Social Sciences</subject><subject>Immune system</subject><subject>Immunoglobulins</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - immunology</subject><subject>Immunology</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - immunology</subject><subject>letter</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Microbial colonies</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>multidisciplinary</subject><subject>Population</subject><subject>Precursor Cells, B-Lymphoid - cytology</subject><subject>Precursor Cells, B-Lymphoid - metabolism</subject><subject>Properties</subject><subject>Rodents</subject><subject>Science</subject><subject>Spleen</subject><subject>Symbiosis</subject><subject>Weaning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0ctrFTEUB-BBFHtbXbmXQTeCjuadzEaoxRdU3Cguw7kzZ6YpmWSazBTqX9-UW-tVusrifPxyHlX1jJK3lHDzLsCyJqRMtOpBtaFCq0Yoox9WG0KYaYjh6qA6zPmcECKpFo-rA8ZbJRVtN9Wvb65LcevA1130MbjfsLgYahcGv2LoMNcIyV_VHxrvAsKIdY-X6OM8YVgKq5czrMd1qT1MLkA9pzgnB0-qRwP4jE9v36Pq56ePP06-NKffP389OT5tOqn00gyoBt7DdpDI-qEForZCERDAhGJMclRGMgG6YwykFqgIDqRVpDeaS8k1P6re73LndTth35WmEnhbWpggXdkIzv5bCe7MjvHSckO0UaYEvLoNSPFixbzYyeUOvYeAcc2WCk6MMJrKQl_-R8_jmkIZryghJFWGkb9qBI-27DGWf7ubUHvMBaPacNoW9eIe1c3uwu6j1ztUTpRzwuFuLkrsze3t3u2Lfr6_ijv759gFvNmBXEphxLTX_z1514PbuPU</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Wesemann, Duane R.</creator><creator>Portuguese, Andrew J.</creator><creator>Meyers, Robin M.</creator><creator>Gallagher, Michael P.</creator><creator>Cluff-Jones, Kendra</creator><creator>Magee, Jennifer M.</creator><creator>Panchakshari, Rohit A.</creator><creator>Rodig, Scott J.</creator><creator>Kepler, Thomas B.</creator><creator>Alt, Frederick W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130905</creationdate><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><author>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/250/347</topic><topic>Animals</topic><topic>B-Lymphocytes - cytology</topic><topic>B-Lymphocytes - immunology</topic><topic>B-Lymphocytes - metabolism</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - immunology</topic><topic>Cell Lineage</topic><topic>Colonization</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Editing</topic><topic>Gene Rearrangement, B-Lymphocyte - genetics</topic><topic>Genetic aspects</topic><topic>Germ-Free Life</topic><topic>Humanities and Social Sciences</topic><topic>Immune system</topic><topic>Immunoglobulins</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - immunology</topic><topic>Immunology</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - immunology</topic><topic>letter</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Microbial colonies</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>multidisciplinary</topic><topic>Population</topic><topic>Precursor Cells, B-Lymphoid - cytology</topic><topic>Precursor Cells, B-Lymphoid - metabolism</topic><topic>Properties</topic><topic>Rodents</topic><topic>Science</topic><topic>Spleen</topic><topic>Symbiosis</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wesemann, Duane R.</creatorcontrib><creatorcontrib>Portuguese, Andrew J.</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Gallagher, Michael P.</creatorcontrib><creatorcontrib>Cluff-Jones, Kendra</creatorcontrib><creatorcontrib>Magee, Jennifer M.</creatorcontrib><creatorcontrib>Panchakshari, Rohit A.</creatorcontrib><creatorcontrib>Rodig, Scott J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Alt, Frederick W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wesemann, Duane R.</au><au>Portuguese, Andrew J.</au><au>Meyers, Robin M.</au><au>Gallagher, Michael P.</au><au>Cluff-Jones, Kendra</au><au>Magee, Jennifer M.</au><au>Panchakshari, Rohit A.</au><au>Rodig, Scott J.</au><au>Kepler, Thomas B.</au><au>Alt, Frederick W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial colonization influences early B-lineage development in the gut lamina propria</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>501</volume><issue>7465</issue><spage>112</spage><epage>115</epage><pages>112-115</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes.
Second site for B-cell formation
Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes.
The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy (
IgH
) and light (
IgL
) chain variable region exons from germline gene segments to generate primary antibody repertoires
1
.
IgH
V(D)J assembly occurs in progenitor (pro-) B cells followed by that of
IgL
in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR).
Rag
expression can continue in immature B cells
2
, allowing continued
Igκ
V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity
3
,
4
,
5
. This ‘receptor editing’ process, which can also lead to
Igλ
V(D)J recombination and expression
3
,
6
,
7
, provides a mechanism whereby antigen encounter at the
Rag
-expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of
Rag
-expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing,
Rag
-expressing LP B-lineage cells have similar
V
H
repertoires, but significantly different
Vκ
repertoires, compared to those of
Rag2
-expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of
Igλ
-expressing versus
Igκ
-expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23965619</pmid><doi>10.1038/nature12496</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2013-09, Vol.501 (7465), p.112-115 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807868 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/250/347 Animals B-Lymphocytes - cytology B-Lymphocytes - immunology B-Lymphocytes - metabolism Bone marrow Bone Marrow Cells - cytology Bone Marrow Cells - immunology Cell Lineage Colonization DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Editing Gene Rearrangement, B-Lymphocyte - genetics Genetic aspects Germ-Free Life Humanities and Social Sciences Immune system Immunoglobulins Immunoglobulins - genetics Immunoglobulins - immunology Immunology Intestinal Mucosa - cytology Intestinal Mucosa - immunology letter Lymphocytes Mice Microbial colonies Microbiota (Symbiotic organisms) multidisciplinary Population Precursor Cells, B-Lymphoid - cytology Precursor Cells, B-Lymphoid - metabolism Properties Rodents Science Spleen Symbiosis Weaning |
title | Microbial colonization influences early B-lineage development in the gut lamina propria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20colonization%20influences%20early%20B-lineage%20development%20in%20the%20gut%20lamina%20propria&rft.jtitle=Nature%20(London)&rft.au=Wesemann,%20Duane%20R.&rft.date=2013-09-05&rft.volume=501&rft.issue=7465&rft.spage=112&rft.epage=115&rft.pages=112-115&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12496&rft_dat=%3Cgale_pubme%3EA342178319%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444516820&rft_id=info:pmid/23965619&rft_galeid=A342178319&rfr_iscdi=true |