Microbial colonization influences early B-lineage development in the gut lamina propria

Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2013-09, Vol.501 (7465), p.112-115
Hauptverfasser: Wesemann, Duane R., Portuguese, Andrew J., Meyers, Robin M., Gallagher, Michael P., Cluff-Jones, Kendra, Magee, Jennifer M., Panchakshari, Rohit A., Rodig, Scott J., Kepler, Thomas B., Alt, Frederick W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 115
container_issue 7465
container_start_page 112
container_title Nature (London)
container_volume 501
creator Wesemann, Duane R.
Portuguese, Andrew J.
Meyers, Robin M.
Gallagher, Michael P.
Cluff-Jones, Kendra
Magee, Jennifer M.
Panchakshari, Rohit A.
Rodig, Scott J.
Kepler, Thomas B.
Alt, Frederick W.
description Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for B-cell formation Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes. The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy ( IgH ) and light ( IgL ) chain variable region exons from germline gene segments to generate primary antibody repertoires 1 . IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells 2 , allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity 3 , 4 , 5 . This ‘receptor editing’ process, which can also lead to Igλ V(D)J recombination and expression 3 , 6 , 7 , provides a mechanism whereby antigen encounter at the Rag -expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag -expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor ed
doi_str_mv 10.1038/nature12496
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A342178319</galeid><sourcerecordid>A342178319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</originalsourceid><addsrcrecordid>eNpt0ctrFTEUB-BBFHtbXbmXQTeCjuadzEaoxRdU3Cguw7kzZ6YpmWSazBTqX9-UW-tVusrifPxyHlX1jJK3lHDzLsCyJqRMtOpBtaFCq0Yoox9WG0KYaYjh6qA6zPmcECKpFo-rA8ZbJRVtN9Wvb65LcevA1130MbjfsLgYahcGv2LoMNcIyV_VHxrvAsKIdY-X6OM8YVgKq5czrMd1qT1MLkA9pzgnB0-qRwP4jE9v36Pq56ePP06-NKffP389OT5tOqn00gyoBt7DdpDI-qEForZCERDAhGJMclRGMgG6YwykFqgIDqRVpDeaS8k1P6re73LndTth35WmEnhbWpggXdkIzv5bCe7MjvHSckO0UaYEvLoNSPFixbzYyeUOvYeAcc2WCk6MMJrKQl_-R8_jmkIZryghJFWGkb9qBI-27DGWf7ubUHvMBaPacNoW9eIe1c3uwu6j1ztUTpRzwuFuLkrsze3t3u2Lfr6_ijv759gFvNmBXEphxLTX_z1514PbuPU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444516820</pqid></control><display><type>article</type><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</creator><creatorcontrib>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</creatorcontrib><description>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for B-cell formation Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes. The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy ( IgH ) and light ( IgL ) chain variable region exons from germline gene segments to generate primary antibody repertoires 1 . IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells 2 , allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity 3 , 4 , 5 . This ‘receptor editing’ process, which can also lead to Igλ V(D)J recombination and expression 3 , 6 , 7 , provides a mechanism whereby antigen encounter at the Rag -expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag -expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag -expressing LP B-lineage cells have similar V H repertoires, but significantly different Vκ repertoires, compared to those of Rag2 -expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ -expressing versus Igκ -expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature12496</identifier><identifier>PMID: 23965619</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/250/347 ; Animals ; B-Lymphocytes - cytology ; B-Lymphocytes - immunology ; B-Lymphocytes - metabolism ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - immunology ; Cell Lineage ; Colonization ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Editing ; Gene Rearrangement, B-Lymphocyte - genetics ; Genetic aspects ; Germ-Free Life ; Humanities and Social Sciences ; Immune system ; Immunoglobulins ; Immunoglobulins - genetics ; Immunoglobulins - immunology ; Immunology ; Intestinal Mucosa - cytology ; Intestinal Mucosa - immunology ; letter ; Lymphocytes ; Mice ; Microbial colonies ; Microbiota (Symbiotic organisms) ; multidisciplinary ; Population ; Precursor Cells, B-Lymphoid - cytology ; Precursor Cells, B-Lymphoid - metabolism ; Properties ; Rodents ; Science ; Spleen ; Symbiosis ; Weaning</subject><ispartof>Nature (London), 2013-09, Vol.501 (7465), p.112-115</ispartof><rights>Springer Nature Limited 2013</rights><rights>COPYRIGHT 2013 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 5, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</citedby><cites>FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature12496$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature12496$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23965619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wesemann, Duane R.</creatorcontrib><creatorcontrib>Portuguese, Andrew J.</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Gallagher, Michael P.</creatorcontrib><creatorcontrib>Cluff-Jones, Kendra</creatorcontrib><creatorcontrib>Magee, Jennifer M.</creatorcontrib><creatorcontrib>Panchakshari, Rohit A.</creatorcontrib><creatorcontrib>Rodig, Scott J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Alt, Frederick W.</creatorcontrib><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for B-cell formation Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes. The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy ( IgH ) and light ( IgL ) chain variable region exons from germline gene segments to generate primary antibody repertoires 1 . IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells 2 , allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity 3 , 4 , 5 . This ‘receptor editing’ process, which can also lead to Igλ V(D)J recombination and expression 3 , 6 , 7 , provides a mechanism whereby antigen encounter at the Rag -expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag -expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag -expressing LP B-lineage cells have similar V H repertoires, but significantly different Vκ repertoires, compared to those of Rag2 -expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ -expressing versus Igκ -expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</description><subject>631/250/347</subject><subject>Animals</subject><subject>B-Lymphocytes - cytology</subject><subject>B-Lymphocytes - immunology</subject><subject>B-Lymphocytes - metabolism</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - immunology</subject><subject>Cell Lineage</subject><subject>Colonization</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Editing</subject><subject>Gene Rearrangement, B-Lymphocyte - genetics</subject><subject>Genetic aspects</subject><subject>Germ-Free Life</subject><subject>Humanities and Social Sciences</subject><subject>Immune system</subject><subject>Immunoglobulins</subject><subject>Immunoglobulins - genetics</subject><subject>Immunoglobulins - immunology</subject><subject>Immunology</subject><subject>Intestinal Mucosa - cytology</subject><subject>Intestinal Mucosa - immunology</subject><subject>letter</subject><subject>Lymphocytes</subject><subject>Mice</subject><subject>Microbial colonies</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>multidisciplinary</subject><subject>Population</subject><subject>Precursor Cells, B-Lymphoid - cytology</subject><subject>Precursor Cells, B-Lymphoid - metabolism</subject><subject>Properties</subject><subject>Rodents</subject><subject>Science</subject><subject>Spleen</subject><subject>Symbiosis</subject><subject>Weaning</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0ctrFTEUB-BBFHtbXbmXQTeCjuadzEaoxRdU3Cguw7kzZ6YpmWSazBTqX9-UW-tVusrifPxyHlX1jJK3lHDzLsCyJqRMtOpBtaFCq0Yoox9WG0KYaYjh6qA6zPmcECKpFo-rA8ZbJRVtN9Wvb65LcevA1130MbjfsLgYahcGv2LoMNcIyV_VHxrvAsKIdY-X6OM8YVgKq5czrMd1qT1MLkA9pzgnB0-qRwP4jE9v36Pq56ePP06-NKffP389OT5tOqn00gyoBt7DdpDI-qEForZCERDAhGJMclRGMgG6YwykFqgIDqRVpDeaS8k1P6re73LndTth35WmEnhbWpggXdkIzv5bCe7MjvHSckO0UaYEvLoNSPFixbzYyeUOvYeAcc2WCk6MMJrKQl_-R8_jmkIZryghJFWGkb9qBI-27DGWf7ubUHvMBaPacNoW9eIe1c3uwu6j1ztUTpRzwuFuLkrsze3t3u2Lfr6_ijv759gFvNmBXEphxLTX_z1514PbuPU</recordid><startdate>20130905</startdate><enddate>20130905</enddate><creator>Wesemann, Duane R.</creator><creator>Portuguese, Andrew J.</creator><creator>Meyers, Robin M.</creator><creator>Gallagher, Michael P.</creator><creator>Cluff-Jones, Kendra</creator><creator>Magee, Jennifer M.</creator><creator>Panchakshari, Rohit A.</creator><creator>Rodig, Scott J.</creator><creator>Kepler, Thomas B.</creator><creator>Alt, Frederick W.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20130905</creationdate><title>Microbial colonization influences early B-lineage development in the gut lamina propria</title><author>Wesemann, Duane R. ; Portuguese, Andrew J. ; Meyers, Robin M. ; Gallagher, Michael P. ; Cluff-Jones, Kendra ; Magee, Jennifer M. ; Panchakshari, Rohit A. ; Rodig, Scott J. ; Kepler, Thomas B. ; Alt, Frederick W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-fe6f3dabf5e2df9a06b460a4a2462253e68524a7c22a574e60ef0960d87355373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>631/250/347</topic><topic>Animals</topic><topic>B-Lymphocytes - cytology</topic><topic>B-Lymphocytes - immunology</topic><topic>B-Lymphocytes - metabolism</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - immunology</topic><topic>Cell Lineage</topic><topic>Colonization</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Editing</topic><topic>Gene Rearrangement, B-Lymphocyte - genetics</topic><topic>Genetic aspects</topic><topic>Germ-Free Life</topic><topic>Humanities and Social Sciences</topic><topic>Immune system</topic><topic>Immunoglobulins</topic><topic>Immunoglobulins - genetics</topic><topic>Immunoglobulins - immunology</topic><topic>Immunology</topic><topic>Intestinal Mucosa - cytology</topic><topic>Intestinal Mucosa - immunology</topic><topic>letter</topic><topic>Lymphocytes</topic><topic>Mice</topic><topic>Microbial colonies</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>multidisciplinary</topic><topic>Population</topic><topic>Precursor Cells, B-Lymphoid - cytology</topic><topic>Precursor Cells, B-Lymphoid - metabolism</topic><topic>Properties</topic><topic>Rodents</topic><topic>Science</topic><topic>Spleen</topic><topic>Symbiosis</topic><topic>Weaning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wesemann, Duane R.</creatorcontrib><creatorcontrib>Portuguese, Andrew J.</creatorcontrib><creatorcontrib>Meyers, Robin M.</creatorcontrib><creatorcontrib>Gallagher, Michael P.</creatorcontrib><creatorcontrib>Cluff-Jones, Kendra</creatorcontrib><creatorcontrib>Magee, Jennifer M.</creatorcontrib><creatorcontrib>Panchakshari, Rohit A.</creatorcontrib><creatorcontrib>Rodig, Scott J.</creatorcontrib><creatorcontrib>Kepler, Thomas B.</creatorcontrib><creatorcontrib>Alt, Frederick W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wesemann, Duane R.</au><au>Portuguese, Andrew J.</au><au>Meyers, Robin M.</au><au>Gallagher, Michael P.</au><au>Cluff-Jones, Kendra</au><au>Magee, Jennifer M.</au><au>Panchakshari, Rohit A.</au><au>Rodig, Scott J.</au><au>Kepler, Thomas B.</au><au>Alt, Frederick W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial colonization influences early B-lineage development in the gut lamina propria</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2013-09-05</date><risdate>2013</risdate><volume>501</volume><issue>7465</issue><spage>112</spage><epage>115</epage><pages>112-115</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Primary B-cell development is thought to be restricted to the bone marrow; here it is shown to occur also in intestinal tissues of postnatal mice, that it peaks at the time of weaning and is increased upon colonization of germ-free mice, and is thus influenced by commensal microbes. Second site for B-cell formation Primary B-cell development is thought to be restricted to the bone marrow, but here Frederick Alt and colleagues present the surprising finding that it also occurs in the gut, where it is stimulated by the gut microbes. The authors describe a population of early B-lineage cells developing within the intestinal mucosa — specifically in the lamina propria — of postnatal mice. B-cell production peaks at the time of weaning and is increased upon colonization of germ-free mice. The repertoire of these B cells differs from that of cells derived from the bone marrow, and may be shaped by commensal microbes. The RAG1/RAG2 endonuclease (RAG) initiates the V(D)J recombination reaction that assembles immunoglobulin heavy ( IgH ) and light ( IgL ) chain variable region exons from germline gene segments to generate primary antibody repertoires 1 . IgH V(D)J assembly occurs in progenitor (pro-) B cells followed by that of IgL in precursor (pre-) B cells. Expression of IgH μ and IgL (Igκ or Igλ) chains generates IgM, which is expressed on immature B cells as the B-cell antigen-binding receptor (BCR). Rag expression can continue in immature B cells 2 , allowing continued Igκ V(D)J recombination that replaces the initial VκJκ exon with one that generates a new specificity 3 , 4 , 5 . This ‘receptor editing’ process, which can also lead to Igλ V(D)J recombination and expression 3 , 6 , 7 , provides a mechanism whereby antigen encounter at the Rag -expressing immature B-cell stage helps shape pre-immune BCR repertoires. As the major site of postnatal B-cell development, the bone marrow is the principal location of primary immunoglobulin repertoire diversification in mice. Here we report that early B-cell development also occurs within the mouse intestinal lamina propria (LP), where the associated V(D)J recombination/receptor editing processes modulate primary LP immunoglobulin repertoires. At weanling age in normally housed mice, the LP contains a population of Rag -expressing B-lineage cells that harbour intermediates indicative of ongoing V(D)J recombination and which contain cells with pro-B, pre-B and editing phenotypes. Consistent with LP-specific receptor editing, Rag -expressing LP B-lineage cells have similar V H repertoires, but significantly different Vκ repertoires, compared to those of Rag2 -expressing bone marrow counterparts. Moreover, colonization of germ-free mice leads to an increased ratio of Igλ -expressing versus Igκ -expressing B cells specifically in the LP. We conclude that B-cell development occurs in the intestinal mucosa, where it is regulated by extracellular signals from commensal microbes that influence gut immunoglobulin repertoires.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>23965619</pmid><doi>10.1038/nature12496</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2013-09, Vol.501 (7465), p.112-115
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3807868
source MEDLINE; SpringerLink Journals; Nature
subjects 631/250/347
Animals
B-Lymphocytes - cytology
B-Lymphocytes - immunology
B-Lymphocytes - metabolism
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - immunology
Cell Lineage
Colonization
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Editing
Gene Rearrangement, B-Lymphocyte - genetics
Genetic aspects
Germ-Free Life
Humanities and Social Sciences
Immune system
Immunoglobulins
Immunoglobulins - genetics
Immunoglobulins - immunology
Immunology
Intestinal Mucosa - cytology
Intestinal Mucosa - immunology
letter
Lymphocytes
Mice
Microbial colonies
Microbiota (Symbiotic organisms)
multidisciplinary
Population
Precursor Cells, B-Lymphoid - cytology
Precursor Cells, B-Lymphoid - metabolism
Properties
Rodents
Science
Spleen
Symbiosis
Weaning
title Microbial colonization influences early B-lineage development in the gut lamina propria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20colonization%20influences%20early%20B-lineage%20development%20in%20the%20gut%20lamina%20propria&rft.jtitle=Nature%20(London)&rft.au=Wesemann,%20Duane%20R.&rft.date=2013-09-05&rft.volume=501&rft.issue=7465&rft.spage=112&rft.epage=115&rft.pages=112-115&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature12496&rft_dat=%3Cgale_pubme%3EA342178319%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444516820&rft_id=info:pmid/23965619&rft_galeid=A342178319&rfr_iscdi=true