The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases

Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurotherapeutics 2013-10, Vol.10 (4), p.808-816
Hauptverfasser: Elder, Jessica, Cortes, Mar, Rykman, Avrielle, Hill, Justin, Karuppagounder, Saravanan, Edwards, Dylan, Ratan, Rajiv R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 816
container_issue 4
container_start_page 808
container_title Neurotherapeutics
container_volume 10
creator Elder, Jessica
Cortes, Mar
Rykman, Avrielle
Hill, Justin
Karuppagounder, Saravanan
Edwards, Dylan
Ratan, Rajiv R.
description Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.
doi_str_mv 10.1007/s13311-013-0224-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3805866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458547246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3-AG8k4I03o0lOMpN4IUjth1BQtN4JIZM52U2dnWyTbGH_fbNsLVUQvErCec6bkzxN85LRt4zS_l1mAIy1lEFLORctPGoOmepV24teP657DdD2nMFB8yznK0olgFZPmwMuqOYdk4fNz8slkpN1WOCMJbhMoiffS4q_kHxDF28wbYmdx3pY2iFModgS4vyenKa4Il_jtHVxNZASyXnIJc5IPqF1WLaTzZifN0-8nTK-uFuPmh-nJ5fH5-3Fl7PPxx8vWicplNZj7x34TjDJtZaMOz4OA3XUQsc6qzyjIx0tAtVAvfRcSadrTUBnnQcFR82Hfe56M6xwdDiXZCezTmFl09ZEG8yflTkszSLeGFBUqq6rAW_uAlK83mAuZhWyw2myM8ZNNkxIJUXPxf-gQijZa70b6_Vf6FXcpLn-xI6qJkDQvlJsT7kUc07o7-dm1Ow0m71mUzWbnWYDtefVwwffd_z2WgG-B3ItzQtMD67-Z-othOCyow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443983407</pqid></control><display><type>article</type><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</creator><creatorcontrib>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</creatorcontrib><description>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-013-0224-3</identifier><identifier>PMID: 24092615</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Epigenesis, Genetic ; Epigenetics ; Histone Deacetylases - genetics ; Humans ; Neurobiology ; Neurology ; Neuronal Plasticity - physiology ; Neurosciences ; Neurosurgery ; Polycomb-Group Proteins - genetics ; Recovery of Function - physiology ; Review ; Stroke - genetics ; Stroke Rehabilitation</subject><ispartof>Neurotherapeutics, 2013-10, Vol.10 (4), p.808-816</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</citedby><cites>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805866/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805866/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24092615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elder, Jessica</creatorcontrib><creatorcontrib>Cortes, Mar</creatorcontrib><creatorcontrib>Rykman, Avrielle</creatorcontrib><creatorcontrib>Hill, Justin</creatorcontrib><creatorcontrib>Karuppagounder, Saravanan</creatorcontrib><creatorcontrib>Edwards, Dylan</creatorcontrib><creatorcontrib>Ratan, Rajiv R.</creatorcontrib><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Histone Deacetylases - genetics</subject><subject>Humans</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Polycomb-Group Proteins - genetics</subject><subject>Recovery of Function - physiology</subject><subject>Review</subject><subject>Stroke - genetics</subject><subject>Stroke Rehabilitation</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhgdRbK3-AG8k4I03o0lOMpN4IUjth1BQtN4JIZM52U2dnWyTbGH_fbNsLVUQvErCec6bkzxN85LRt4zS_l1mAIy1lEFLORctPGoOmepV24teP657DdD2nMFB8yznK0olgFZPmwMuqOYdk4fNz8slkpN1WOCMJbhMoiffS4q_kHxDF28wbYmdx3pY2iFModgS4vyenKa4Il_jtHVxNZASyXnIJc5IPqF1WLaTzZifN0-8nTK-uFuPmh-nJ5fH5-3Fl7PPxx8vWicplNZj7x34TjDJtZaMOz4OA3XUQsc6qzyjIx0tAtVAvfRcSadrTUBnnQcFR82Hfe56M6xwdDiXZCezTmFl09ZEG8yflTkszSLeGFBUqq6rAW_uAlK83mAuZhWyw2myM8ZNNkxIJUXPxf-gQijZa70b6_Vf6FXcpLn-xI6qJkDQvlJsT7kUc07o7-dm1Ow0m71mUzWbnWYDtefVwwffd_z2WgG-B3ItzQtMD67-Z-othOCyow</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Elder, Jessica</creator><creator>Cortes, Mar</creator><creator>Rykman, Avrielle</creator><creator>Hill, Justin</creator><creator>Karuppagounder, Saravanan</creator><creator>Edwards, Dylan</creator><creator>Ratan, Rajiv R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><author>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Histone Deacetylases - genetics</topic><topic>Humans</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Polycomb-Group Proteins - genetics</topic><topic>Recovery of Function - physiology</topic><topic>Review</topic><topic>Stroke - genetics</topic><topic>Stroke Rehabilitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elder, Jessica</creatorcontrib><creatorcontrib>Cortes, Mar</creatorcontrib><creatorcontrib>Rykman, Avrielle</creatorcontrib><creatorcontrib>Hill, Justin</creatorcontrib><creatorcontrib>Karuppagounder, Saravanan</creatorcontrib><creatorcontrib>Edwards, Dylan</creatorcontrib><creatorcontrib>Ratan, Rajiv R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elder, Jessica</au><au>Cortes, Mar</au><au>Rykman, Avrielle</au><au>Hill, Justin</au><au>Karuppagounder, Saravanan</au><au>Edwards, Dylan</au><au>Ratan, Rajiv R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>10</volume><issue>4</issue><spage>808</spage><epage>816</epage><pages>808-816</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24092615</pmid><doi>10.1007/s13311-013-0224-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-7213
ispartof Neurotherapeutics, 2013-10, Vol.10 (4), p.808-816
issn 1933-7213
1878-7479
1878-7479
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3805866
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Animals
Biomedical and Life Sciences
Biomedicine
Epigenesis, Genetic
Epigenetics
Histone Deacetylases - genetics
Humans
Neurobiology
Neurology
Neuronal Plasticity - physiology
Neurosciences
Neurosurgery
Polycomb-Group Proteins - genetics
Recovery of Function - physiology
Review
Stroke - genetics
Stroke Rehabilitation
title The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Epigenetics%20of%20Stroke%20Recovery%20and%20Rehabilitation:%20From%20Polycomb%20to%20Histone%20Deacetylases&rft.jtitle=Neurotherapeutics&rft.au=Elder,%20Jessica&rft.date=2013-10-01&rft.volume=10&rft.issue=4&rft.spage=808&rft.epage=816&rft.pages=808-816&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-013-0224-3&rft_dat=%3Cproquest_pubme%3E1458547246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443983407&rft_id=info:pmid/24092615&rfr_iscdi=true