The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases
Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in pat...
Gespeichert in:
Veröffentlicht in: | Neurotherapeutics 2013-10, Vol.10 (4), p.808-816 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 816 |
---|---|
container_issue | 4 |
container_start_page | 808 |
container_title | Neurotherapeutics |
container_volume | 10 |
creator | Elder, Jessica Cortes, Mar Rykman, Avrielle Hill, Justin Karuppagounder, Saravanan Edwards, Dylan Ratan, Rajiv R. |
description | Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery. |
doi_str_mv | 10.1007/s13311-013-0224-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3805866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458547246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3-AG8k4I03o0lOMpN4IUjth1BQtN4JIZM52U2dnWyTbGH_fbNsLVUQvErCec6bkzxN85LRt4zS_l1mAIy1lEFLORctPGoOmepV24teP657DdD2nMFB8yznK0olgFZPmwMuqOYdk4fNz8slkpN1WOCMJbhMoiffS4q_kHxDF28wbYmdx3pY2iFModgS4vyenKa4Il_jtHVxNZASyXnIJc5IPqF1WLaTzZifN0-8nTK-uFuPmh-nJ5fH5-3Fl7PPxx8vWicplNZj7x34TjDJtZaMOz4OA3XUQsc6qzyjIx0tAtVAvfRcSadrTUBnnQcFR82Hfe56M6xwdDiXZCezTmFl09ZEG8yflTkszSLeGFBUqq6rAW_uAlK83mAuZhWyw2myM8ZNNkxIJUXPxf-gQijZa70b6_Vf6FXcpLn-xI6qJkDQvlJsT7kUc07o7-dm1Ow0m71mUzWbnWYDtefVwwffd_z2WgG-B3ItzQtMD67-Z-othOCyow</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443983407</pqid></control><display><type>article</type><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</creator><creatorcontrib>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</creatorcontrib><description>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</description><identifier>ISSN: 1933-7213</identifier><identifier>ISSN: 1878-7479</identifier><identifier>EISSN: 1878-7479</identifier><identifier>DOI: 10.1007/s13311-013-0224-3</identifier><identifier>PMID: 24092615</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Animals ; Biomedical and Life Sciences ; Biomedicine ; Epigenesis, Genetic ; Epigenetics ; Histone Deacetylases - genetics ; Humans ; Neurobiology ; Neurology ; Neuronal Plasticity - physiology ; Neurosciences ; Neurosurgery ; Polycomb-Group Proteins - genetics ; Recovery of Function - physiology ; Review ; Stroke - genetics ; Stroke Rehabilitation</subject><ispartof>Neurotherapeutics, 2013-10, Vol.10 (4), p.808-816</ispartof><rights>The American Society for Experimental NeuroTherapeutics, Inc. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</citedby><cites>FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805866/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3805866/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,41464,42533,51294,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24092615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elder, Jessica</creatorcontrib><creatorcontrib>Cortes, Mar</creatorcontrib><creatorcontrib>Rykman, Avrielle</creatorcontrib><creatorcontrib>Hill, Justin</creatorcontrib><creatorcontrib>Karuppagounder, Saravanan</creatorcontrib><creatorcontrib>Edwards, Dylan</creatorcontrib><creatorcontrib>Ratan, Rajiv R.</creatorcontrib><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><title>Neurotherapeutics</title><addtitle>Neurotherapeutics</addtitle><addtitle>Neurotherapeutics</addtitle><description>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Histone Deacetylases - genetics</subject><subject>Humans</subject><subject>Neurobiology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurosciences</subject><subject>Neurosurgery</subject><subject>Polycomb-Group Proteins - genetics</subject><subject>Recovery of Function - physiology</subject><subject>Review</subject><subject>Stroke - genetics</subject><subject>Stroke Rehabilitation</subject><issn>1933-7213</issn><issn>1878-7479</issn><issn>1878-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkV1rFDEUhgdRbK3-AG8k4I03o0lOMpN4IUjth1BQtN4JIZM52U2dnWyTbGH_fbNsLVUQvErCec6bkzxN85LRt4zS_l1mAIy1lEFLORctPGoOmepV24teP657DdD2nMFB8yznK0olgFZPmwMuqOYdk4fNz8slkpN1WOCMJbhMoiffS4q_kHxDF28wbYmdx3pY2iFModgS4vyenKa4Il_jtHVxNZASyXnIJc5IPqF1WLaTzZifN0-8nTK-uFuPmh-nJ5fH5-3Fl7PPxx8vWicplNZj7x34TjDJtZaMOz4OA3XUQsc6qzyjIx0tAtVAvfRcSadrTUBnnQcFR82Hfe56M6xwdDiXZCezTmFl09ZEG8yflTkszSLeGFBUqq6rAW_uAlK83mAuZhWyw2myM8ZNNkxIJUXPxf-gQijZa70b6_Vf6FXcpLn-xI6qJkDQvlJsT7kUc07o7-dm1Ow0m71mUzWbnWYDtefVwwffd_z2WgG-B3ItzQtMD67-Z-othOCyow</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Elder, Jessica</creator><creator>Cortes, Mar</creator><creator>Rykman, Avrielle</creator><creator>Hill, Justin</creator><creator>Karuppagounder, Saravanan</creator><creator>Edwards, Dylan</creator><creator>Ratan, Rajiv R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20131001</creationdate><title>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</title><author>Elder, Jessica ; Cortes, Mar ; Rykman, Avrielle ; Hill, Justin ; Karuppagounder, Saravanan ; Edwards, Dylan ; Ratan, Rajiv R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c503t-fe7fc3f6415299512c2dbb0c0a3616a8f10d0dae30930f5f285c9a36436acf383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Histone Deacetylases - genetics</topic><topic>Humans</topic><topic>Neurobiology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurosciences</topic><topic>Neurosurgery</topic><topic>Polycomb-Group Proteins - genetics</topic><topic>Recovery of Function - physiology</topic><topic>Review</topic><topic>Stroke - genetics</topic><topic>Stroke Rehabilitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elder, Jessica</creatorcontrib><creatorcontrib>Cortes, Mar</creatorcontrib><creatorcontrib>Rykman, Avrielle</creatorcontrib><creatorcontrib>Hill, Justin</creatorcontrib><creatorcontrib>Karuppagounder, Saravanan</creatorcontrib><creatorcontrib>Edwards, Dylan</creatorcontrib><creatorcontrib>Ratan, Rajiv R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database (ProQuest)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurotherapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elder, Jessica</au><au>Cortes, Mar</au><au>Rykman, Avrielle</au><au>Hill, Justin</au><au>Karuppagounder, Saravanan</au><au>Edwards, Dylan</au><au>Ratan, Rajiv R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases</atitle><jtitle>Neurotherapeutics</jtitle><stitle>Neurotherapeutics</stitle><addtitle>Neurotherapeutics</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>10</volume><issue>4</issue><spage>808</spage><epage>816</epage><pages>808-816</pages><issn>1933-7213</issn><issn>1878-7479</issn><eissn>1878-7479</eissn><abstract>Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24092615</pmid><doi>10.1007/s13311-013-0224-3</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1933-7213 |
ispartof | Neurotherapeutics, 2013-10, Vol.10 (4), p.808-816 |
issn | 1933-7213 1878-7479 1878-7479 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3805866 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Animals Biomedical and Life Sciences Biomedicine Epigenesis, Genetic Epigenetics Histone Deacetylases - genetics Humans Neurobiology Neurology Neuronal Plasticity - physiology Neurosciences Neurosurgery Polycomb-Group Proteins - genetics Recovery of Function - physiology Review Stroke - genetics Stroke Rehabilitation |
title | The Epigenetics of Stroke Recovery and Rehabilitation: From Polycomb to Histone Deacetylases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Epigenetics%20of%20Stroke%20Recovery%20and%20Rehabilitation:%20From%20Polycomb%20to%20Histone%20Deacetylases&rft.jtitle=Neurotherapeutics&rft.au=Elder,%20Jessica&rft.date=2013-10-01&rft.volume=10&rft.issue=4&rft.spage=808&rft.epage=816&rft.pages=808-816&rft.issn=1933-7213&rft.eissn=1878-7479&rft_id=info:doi/10.1007/s13311-013-0224-3&rft_dat=%3Cproquest_pubme%3E1458547246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443983407&rft_id=info:pmid/24092615&rfr_iscdi=true |