Leaf-galling phylloxera on grapes reprograms host metabolism and morphology
Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced p...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (41), p.16663-16668 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16668 |
---|---|
container_issue | 41 |
container_start_page | 16663 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 110 |
creator | Nabity, Paul D. Haus, Miranda J. Berenbaum, May R. DeLucia, Evan H. |
description | Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit. |
doi_str_mv | 10.1073/pnas.1220219110 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23749579</jstor_id><sourcerecordid>23749579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxSMEYsvCmRMQiQuX7M7425eV0IovUYkD7NlyGidN5cTBThH973HU0gUunGzp_ebpzbyieI5whSDp9TTadIWEAEGNCA-KFYLGSjAND4sVAJGVYoRdFE9S2gGA5goeFxeEgZCCy1Xxee1sW3XW-37syml78D78dNGWYSy7aCeXyuimGPJ_SOU2pLkc3Gzr4Ps0lHZsyiHEaRt86A5Pi0et9ck9O72Xxd37d99uP1brLx8-3b5dVxuuca4IOsob0rgcmTbKWkR0G-VqprisuUDXalC1lIIyyrgV1tbMca6bum5RW3pZ3Bx9p309uGbjxjlab6bYDzYeTLC9-VsZ-63pwg9DpdZUiWzw5mQQw_e9S7MZ-rRx3tvRhX0yqICCVPmq_0dZzggM2YK-_gfdhX0c8yUWinDFgLBMXR-pTQwpRdeecyOYpVOzdGruO80TL_9c98z_LjED5QlYJs922Y-hQSEEzciLI7JLc4j3FlQyzaXO-quj3tpgbBf7ZO6-EkABgAyUBPoLDHS6uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442584024</pqid></control><display><type>article</type><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</creator><creatorcontrib>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</creatorcontrib><description>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220219110</identifier><identifier>PMID: 24067657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Aphids - physiology ; Base Sequence ; Bayes Theorem ; Biological Sciences ; biosynthesis ; Carbon ; Carbon - metabolism ; Computational Biology ; Daktulosphaira vitifoliae ; fermentation ; Fruits ; Gene expression ; Gene Expression Regulation, Plant - physiology ; Genotype & phenotype ; glycolysis ; grapes ; Host-Parasite Interactions - physiology ; Insect genetics ; Insect morphology ; Insects ; leaf development ; leaf galls ; Leaves ; Metabolic Networks and Pathways - genetics ; Metabolic Networks and Pathways - physiology ; Metabolism ; Molecular Sequence Data ; Morphology ; parasites ; phenotype ; Photosynthesis ; Phylloxera ; Phytophagous insects ; Plant gall ; Plant growth ; Plant Leaves - parasitology ; plant organs ; Plant Stomata - parasitology ; Plant Stomata - physiology ; Plant Transpiration - physiology ; Plants ; secondary metabolites ; Sequence Analysis, RNA ; Stomata ; terpenoids ; transcriptome ; Vitis - metabolism ; Vitis - parasitology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16663-16668</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 8, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</citedby><cites>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23749579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23749579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24067657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabity, Paul D.</creatorcontrib><creatorcontrib>Haus, Miranda J.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</description><subject>Animals</subject><subject>Aphids - physiology</subject><subject>Base Sequence</subject><subject>Bayes Theorem</subject><subject>Biological Sciences</subject><subject>biosynthesis</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Computational Biology</subject><subject>Daktulosphaira vitifoliae</subject><subject>fermentation</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genotype & phenotype</subject><subject>glycolysis</subject><subject>grapes</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Insect genetics</subject><subject>Insect morphology</subject><subject>Insects</subject><subject>leaf development</subject><subject>leaf galls</subject><subject>Leaves</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic Networks and Pathways - physiology</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Morphology</subject><subject>parasites</subject><subject>phenotype</subject><subject>Photosynthesis</subject><subject>Phylloxera</subject><subject>Phytophagous insects</subject><subject>Plant gall</subject><subject>Plant growth</subject><subject>Plant Leaves - parasitology</subject><subject>plant organs</subject><subject>Plant Stomata - parasitology</subject><subject>Plant Stomata - physiology</subject><subject>Plant Transpiration - physiology</subject><subject>Plants</subject><subject>secondary metabolites</subject><subject>Sequence Analysis, RNA</subject><subject>Stomata</subject><subject>terpenoids</subject><subject>transcriptome</subject><subject>Vitis - metabolism</subject><subject>Vitis - parasitology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxSMEYsvCmRMQiQuX7M7425eV0IovUYkD7NlyGidN5cTBThH973HU0gUunGzp_ebpzbyieI5whSDp9TTadIWEAEGNCA-KFYLGSjAND4sVAJGVYoRdFE9S2gGA5goeFxeEgZCCy1Xxee1sW3XW-37syml78D78dNGWYSy7aCeXyuimGPJ_SOU2pLkc3Gzr4Ps0lHZsyiHEaRt86A5Pi0et9ck9O72Xxd37d99uP1brLx8-3b5dVxuuca4IOsob0rgcmTbKWkR0G-VqprisuUDXalC1lIIyyrgV1tbMca6bum5RW3pZ3Bx9p309uGbjxjlab6bYDzYeTLC9-VsZ-63pwg9DpdZUiWzw5mQQw_e9S7MZ-rRx3tvRhX0yqICCVPmq_0dZzggM2YK-_gfdhX0c8yUWinDFgLBMXR-pTQwpRdeecyOYpVOzdGruO80TL_9c98z_LjED5QlYJs922Y-hQSEEzciLI7JLc4j3FlQyzaXO-quj3tpgbBf7ZO6-EkABgAyUBPoLDHS6uQ</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Nabity, Paul D.</creator><creator>Haus, Miranda J.</creator><creator>Berenbaum, May R.</creator><creator>DeLucia, Evan H.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131008</creationdate><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><author>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Aphids - physiology</topic><topic>Base Sequence</topic><topic>Bayes Theorem</topic><topic>Biological Sciences</topic><topic>biosynthesis</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Computational Biology</topic><topic>Daktulosphaira vitifoliae</topic><topic>fermentation</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genotype & phenotype</topic><topic>glycolysis</topic><topic>grapes</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Insect genetics</topic><topic>Insect morphology</topic><topic>Insects</topic><topic>leaf development</topic><topic>leaf galls</topic><topic>Leaves</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic Networks and Pathways - physiology</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Morphology</topic><topic>parasites</topic><topic>phenotype</topic><topic>Photosynthesis</topic><topic>Phylloxera</topic><topic>Phytophagous insects</topic><topic>Plant gall</topic><topic>Plant growth</topic><topic>Plant Leaves - parasitology</topic><topic>plant organs</topic><topic>Plant Stomata - parasitology</topic><topic>Plant Stomata - physiology</topic><topic>Plant Transpiration - physiology</topic><topic>Plants</topic><topic>secondary metabolites</topic><topic>Sequence Analysis, RNA</topic><topic>Stomata</topic><topic>terpenoids</topic><topic>transcriptome</topic><topic>Vitis - metabolism</topic><topic>Vitis - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabity, Paul D.</creatorcontrib><creatorcontrib>Haus, Miranda J.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabity, Paul D.</au><au>Haus, Miranda J.</au><au>Berenbaum, May R.</au><au>DeLucia, Evan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-08</date><risdate>2013</risdate><volume>110</volume><issue>41</issue><spage>16663</spage><epage>16668</epage><pages>16663-16668</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24067657</pmid><doi>10.1073/pnas.1220219110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16663-16668 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799386 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Aphids - physiology Base Sequence Bayes Theorem Biological Sciences biosynthesis Carbon Carbon - metabolism Computational Biology Daktulosphaira vitifoliae fermentation Fruits Gene expression Gene Expression Regulation, Plant - physiology Genotype & phenotype glycolysis grapes Host-Parasite Interactions - physiology Insect genetics Insect morphology Insects leaf development leaf galls Leaves Metabolic Networks and Pathways - genetics Metabolic Networks and Pathways - physiology Metabolism Molecular Sequence Data Morphology parasites phenotype Photosynthesis Phylloxera Phytophagous insects Plant gall Plant growth Plant Leaves - parasitology plant organs Plant Stomata - parasitology Plant Stomata - physiology Plant Transpiration - physiology Plants secondary metabolites Sequence Analysis, RNA Stomata terpenoids transcriptome Vitis - metabolism Vitis - parasitology |
title | Leaf-galling phylloxera on grapes reprograms host metabolism and morphology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf-galling%20phylloxera%20on%20grapes%20reprograms%20host%20metabolism%20and%20morphology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nabity,%20Paul%20D.&rft.date=2013-10-08&rft.volume=110&rft.issue=41&rft.spage=16663&rft.epage=16668&rft.pages=16663-16668&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1220219110&rft_dat=%3Cjstor_proqu%3E23749579%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442584024&rft_id=info:pmid/24067657&rft_jstor_id=23749579&rfr_iscdi=true |