Leaf-galling phylloxera on grapes reprograms host metabolism and morphology

Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2013-10, Vol.110 (41), p.16663-16668
Hauptverfasser: Nabity, Paul D., Haus, Miranda J., Berenbaum, May R., DeLucia, Evan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16668
container_issue 41
container_start_page 16663
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 110
creator Nabity, Paul D.
Haus, Miranda J.
Berenbaum, May R.
DeLucia, Evan H.
description Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.
doi_str_mv 10.1073/pnas.1220219110
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23749579</jstor_id><sourcerecordid>23749579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</originalsourceid><addsrcrecordid>eNqFkc2P0zAQxSMEYsvCmRMQiQuX7M7425eV0IovUYkD7NlyGidN5cTBThH973HU0gUunGzp_ebpzbyieI5whSDp9TTadIWEAEGNCA-KFYLGSjAND4sVAJGVYoRdFE9S2gGA5goeFxeEgZCCy1Xxee1sW3XW-37syml78D78dNGWYSy7aCeXyuimGPJ_SOU2pLkc3Gzr4Ps0lHZsyiHEaRt86A5Pi0et9ck9O72Xxd37d99uP1brLx8-3b5dVxuuca4IOsob0rgcmTbKWkR0G-VqprisuUDXalC1lIIyyrgV1tbMca6bum5RW3pZ3Bx9p309uGbjxjlab6bYDzYeTLC9-VsZ-63pwg9DpdZUiWzw5mQQw_e9S7MZ-rRx3tvRhX0yqICCVPmq_0dZzggM2YK-_gfdhX0c8yUWinDFgLBMXR-pTQwpRdeecyOYpVOzdGruO80TL_9c98z_LjED5QlYJs922Y-hQSEEzciLI7JLc4j3FlQyzaXO-quj3tpgbBf7ZO6-EkABgAyUBPoLDHS6uQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442584024</pqid></control><display><type>article</type><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</creator><creatorcontrib>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</creatorcontrib><description>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1220219110</identifier><identifier>PMID: 24067657</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Aphids - physiology ; Base Sequence ; Bayes Theorem ; Biological Sciences ; biosynthesis ; Carbon ; Carbon - metabolism ; Computational Biology ; Daktulosphaira vitifoliae ; fermentation ; Fruits ; Gene expression ; Gene Expression Regulation, Plant - physiology ; Genotype &amp; phenotype ; glycolysis ; grapes ; Host-Parasite Interactions - physiology ; Insect genetics ; Insect morphology ; Insects ; leaf development ; leaf galls ; Leaves ; Metabolic Networks and Pathways - genetics ; Metabolic Networks and Pathways - physiology ; Metabolism ; Molecular Sequence Data ; Morphology ; parasites ; phenotype ; Photosynthesis ; Phylloxera ; Phytophagous insects ; Plant gall ; Plant growth ; Plant Leaves - parasitology ; plant organs ; Plant Stomata - parasitology ; Plant Stomata - physiology ; Plant Transpiration - physiology ; Plants ; secondary metabolites ; Sequence Analysis, RNA ; Stomata ; terpenoids ; transcriptome ; Vitis - metabolism ; Vitis - parasitology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16663-16668</ispartof><rights>copyright © 1993–2008 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 8, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</citedby><cites>FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/110/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23749579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23749579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24067657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nabity, Paul D.</creatorcontrib><creatorcontrib>Haus, Miranda J.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</description><subject>Animals</subject><subject>Aphids - physiology</subject><subject>Base Sequence</subject><subject>Bayes Theorem</subject><subject>Biological Sciences</subject><subject>biosynthesis</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Computational Biology</subject><subject>Daktulosphaira vitifoliae</subject><subject>fermentation</subject><subject>Fruits</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Genotype &amp; phenotype</subject><subject>glycolysis</subject><subject>grapes</subject><subject>Host-Parasite Interactions - physiology</subject><subject>Insect genetics</subject><subject>Insect morphology</subject><subject>Insects</subject><subject>leaf development</subject><subject>leaf galls</subject><subject>Leaves</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolic Networks and Pathways - physiology</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Morphology</subject><subject>parasites</subject><subject>phenotype</subject><subject>Photosynthesis</subject><subject>Phylloxera</subject><subject>Phytophagous insects</subject><subject>Plant gall</subject><subject>Plant growth</subject><subject>Plant Leaves - parasitology</subject><subject>plant organs</subject><subject>Plant Stomata - parasitology</subject><subject>Plant Stomata - physiology</subject><subject>Plant Transpiration - physiology</subject><subject>Plants</subject><subject>secondary metabolites</subject><subject>Sequence Analysis, RNA</subject><subject>Stomata</subject><subject>terpenoids</subject><subject>transcriptome</subject><subject>Vitis - metabolism</subject><subject>Vitis - parasitology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2P0zAQxSMEYsvCmRMQiQuX7M7425eV0IovUYkD7NlyGidN5cTBThH973HU0gUunGzp_ebpzbyieI5whSDp9TTadIWEAEGNCA-KFYLGSjAND4sVAJGVYoRdFE9S2gGA5goeFxeEgZCCy1Xxee1sW3XW-37syml78D78dNGWYSy7aCeXyuimGPJ_SOU2pLkc3Gzr4Ps0lHZsyiHEaRt86A5Pi0et9ck9O72Xxd37d99uP1brLx8-3b5dVxuuca4IOsob0rgcmTbKWkR0G-VqprisuUDXalC1lIIyyrgV1tbMca6bum5RW3pZ3Bx9p309uGbjxjlab6bYDzYeTLC9-VsZ-63pwg9DpdZUiWzw5mQQw_e9S7MZ-rRx3tvRhX0yqICCVPmq_0dZzggM2YK-_gfdhX0c8yUWinDFgLBMXR-pTQwpRdeecyOYpVOzdGruO80TL_9c98z_LjED5QlYJs922Y-hQSEEzciLI7JLc4j3FlQyzaXO-quj3tpgbBf7ZO6-EkABgAyUBPoLDHS6uQ</recordid><startdate>20131008</startdate><enddate>20131008</enddate><creator>Nabity, Paul D.</creator><creator>Haus, Miranda J.</creator><creator>Berenbaum, May R.</creator><creator>DeLucia, Evan H.</creator><general>National Academy of Sciences</general><general>NATIONAL ACADEMY OF SCIENCES</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20131008</creationdate><title>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</title><author>Nabity, Paul D. ; Haus, Miranda J. ; Berenbaum, May R. ; DeLucia, Evan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-21e35d2de1913d8aa111ec8eb4857b561ef908b77634345a6aab4e559dbbf19a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Aphids - physiology</topic><topic>Base Sequence</topic><topic>Bayes Theorem</topic><topic>Biological Sciences</topic><topic>biosynthesis</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Computational Biology</topic><topic>Daktulosphaira vitifoliae</topic><topic>fermentation</topic><topic>Fruits</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Genotype &amp; phenotype</topic><topic>glycolysis</topic><topic>grapes</topic><topic>Host-Parasite Interactions - physiology</topic><topic>Insect genetics</topic><topic>Insect morphology</topic><topic>Insects</topic><topic>leaf development</topic><topic>leaf galls</topic><topic>Leaves</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolic Networks and Pathways - physiology</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Morphology</topic><topic>parasites</topic><topic>phenotype</topic><topic>Photosynthesis</topic><topic>Phylloxera</topic><topic>Phytophagous insects</topic><topic>Plant gall</topic><topic>Plant growth</topic><topic>Plant Leaves - parasitology</topic><topic>plant organs</topic><topic>Plant Stomata - parasitology</topic><topic>Plant Stomata - physiology</topic><topic>Plant Transpiration - physiology</topic><topic>Plants</topic><topic>secondary metabolites</topic><topic>Sequence Analysis, RNA</topic><topic>Stomata</topic><topic>terpenoids</topic><topic>transcriptome</topic><topic>Vitis - metabolism</topic><topic>Vitis - parasitology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nabity, Paul D.</creatorcontrib><creatorcontrib>Haus, Miranda J.</creatorcontrib><creatorcontrib>Berenbaum, May R.</creatorcontrib><creatorcontrib>DeLucia, Evan H.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nabity, Paul D.</au><au>Haus, Miranda J.</au><au>Berenbaum, May R.</au><au>DeLucia, Evan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leaf-galling phylloxera on grapes reprograms host metabolism and morphology</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2013-10-08</date><risdate>2013</risdate><volume>110</volume><issue>41</issue><spage>16663</spage><epage>16668</epage><pages>16663-16668</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Endoparasitism by gall-forming insects dramatically alters the plant phenotype by altering growth patterns and modifying plant organs in ways that appear to directly benefit the gall former. Because these morphological and physiological changes are linked to the presence of the insect, the induced phenotype is said to function as an extension of the parasite, albeit by unknown mechanisms. Here we report the gall-forming aphid-like parasite phylloxera, Daktulosphaira vitifoliae, induces stomata on the adaxial surface of grape leaves where stomata typically do not occur. We characterized the function of the phylloxera-induced stomata by tracing transport of assimilated carbon. Because induction of stomata suggests a significant manipulation of primary metabolism, we also characterized the gall transcriptome to infer the level of global reconfiguration of primary metabolism and the subsequent changes in downstream secondary metabolism. Phylloxera feeding induced stomata formation in proximity to the insect and promoted the assimilation and importation of carbon into the gall. Gene expression related to water, nutrient, and mineral transport; glycolysis; and fermentation increased in leaf-gall tissues. This shift from an autotrophic to a heterotrophic profile occurred concurrently with decreased gene expression for nonmevalonate and terpenoid synthesis and increased gene expression in shikimate and phenylpropanoid biosynthesis, secondary metabolite systems that alter defense status in grapes. These functional insect-induced stomata thus comprise part of an extended phenotype, whereby D. vitifoliae globally reprograms grape leaf development to alter patterns of primary metabolism, nutrient mobilization, and defense investment in favor of the galling habit.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>24067657</pmid><doi>10.1073/pnas.1220219110</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2013-10, Vol.110 (41), p.16663-16668
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_3799386
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Aphids - physiology
Base Sequence
Bayes Theorem
Biological Sciences
biosynthesis
Carbon
Carbon - metabolism
Computational Biology
Daktulosphaira vitifoliae
fermentation
Fruits
Gene expression
Gene Expression Regulation, Plant - physiology
Genotype & phenotype
glycolysis
grapes
Host-Parasite Interactions - physiology
Insect genetics
Insect morphology
Insects
leaf development
leaf galls
Leaves
Metabolic Networks and Pathways - genetics
Metabolic Networks and Pathways - physiology
Metabolism
Molecular Sequence Data
Morphology
parasites
phenotype
Photosynthesis
Phylloxera
Phytophagous insects
Plant gall
Plant growth
Plant Leaves - parasitology
plant organs
Plant Stomata - parasitology
Plant Stomata - physiology
Plant Transpiration - physiology
Plants
secondary metabolites
Sequence Analysis, RNA
Stomata
terpenoids
transcriptome
Vitis - metabolism
Vitis - parasitology
title Leaf-galling phylloxera on grapes reprograms host metabolism and morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leaf-galling%20phylloxera%20on%20grapes%20reprograms%20host%20metabolism%20and%20morphology&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Nabity,%20Paul%20D.&rft.date=2013-10-08&rft.volume=110&rft.issue=41&rft.spage=16663&rft.epage=16668&rft.pages=16663-16668&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1220219110&rft_dat=%3Cjstor_proqu%3E23749579%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442584024&rft_id=info:pmid/24067657&rft_jstor_id=23749579&rfr_iscdi=true